

DATA SCIENCE USING PYTHON
B.A / B.Com.(Computer Applications)

THIRD YEAR, SEMESTER-V

 Lesson Writers:

Dr. K. Lavanya Mr. G.V. Suresh,

Asst. Professor, Assoc. Professor

Dept. of Comp. Science & Engg., Dept. of Comp. Science & Engg.,

Acharya Nagarjuna University, Lakireddy Balireddy College of

Engineering, Mylavaram

Mrs. A. Sravani

 Assoc. Professor,

 Dept. of Information Technology,

 Lakireddy Balireddy College of

 Engineering, Mylavaram

 Editor & Lesson Writer

Dr. U. Surya Kameswari
Asst. Professor,

Dept. of Comp. Science & Engg.,

Acharya Nagarjuna University

Director

Prof. V.VENKATESWARLU

 M.A., (Soc), M.S.W.,M.Phil., Ph.D.
Centre for Distance Education

Acharya Nagarjuna University

Nagarjuna Nagar 522 510

Ph: 0863-2346222, 2346208

 0863- 2346259 (Study Material)

Website www.anucde.info

E-mail: anucdedirector@gmail.com

B.A/ B.Com. (C.A.)

First Edition : 2021

No. of Copies :

© Acharya Nagarjuna University

This book is exclusively prepared for the use of students of B.A/ B.Com C.A),

Centre for Distance Education, Acharya Nagarjuna University and this book is meant

for limited circulation only.

Published by:

Prof. V.VENKATESWARLU,
Director

Centre for Distance Education,

Acharya Nagarjuna University

Printed at:

FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been forging

ahead in the path of progress and dynamism, offering a variety of courses and

research contributions. I am extremely happy that by gaining ‘A’ grade from the

NAAC in the year 2016, Acharya Nagarjuna University is offering educational

opportunities at the UG, PG levels apart from research degrees to students

from over 443 affiliated colleges spread over the two districts of Guntur and

Prakasam.

The University has also started the Centre for Distance Education in

2003-04 with the aim of taking higher education to the door step of all the

sectors of the society. The centre will be a great help to those who cannot join in

colleges, those who cannot afford the exorbitant fees as regular students, and

even to housewives desirous of pursuing higher studies. Acharya Nagarjuna

University has started offering B.A., and B.Com courses at the Degree level and

M.A., M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the

academic year 2003-2004 onwards.

To facilitate easier understanding by students studying through the

distance mode, these self-instruction materials have been prepared by eminent

and experienced teachers. The lessons have been drafted with great care and

expertise in the stipulated time by these teachers. Constructive ideas and

scholarly suggestions are welcome from students and teachers involved

respectively. Such ideas will be incorporated for the greater efficacy of this

distance mode of education. For clarification of doubts and feedback, weekly

classes and contact classes will be arranged at the UG and PG levels

respectively.

It is my aim that students getting higher education through the Centre for

Distance Education should improve their qualification, have better employment

opportunities and in turn be part of country’s progress. It is my fond desire that

in the years to come, the Centre for Distance Education will go from strength to

strength in the form of new courses and by catering to larger number of people.

My congratulations to all the Directors, Academic Coordinators, Editors and

Lesson- writers of the Centre who have helped in these endeavours.

 Prof. K. Gangadhara Rao

 Vice-Chancellor, I/c.

 Acharya Nagarjuna University

B.A/B.Com. (Computer Applications)

Third Year, Semester-V

509BCE21- DATA SCIENCE USING PYTHON

 Syllabus

Learning Outcomes:

Upon successful completion of the course, a student will be able to:

1. Understand basic concepts of data science

2. Understand why python is a useful scripting language for developers.

3. Use standard programming constructs like selection and repetition.

4. Use aggregated data (list, tuple, and dictionary).

5. Implement functions and modules.

II. Syllabus :(Total hours: 75 including Theory, Practical, Training,

Unit tests etc.) Unit — 1: Introduction to data science (12h)

Data science and its importance, advantages of data science, the process of

data science,

Responsibilities of a data scientist, qualifications of data scientists, would you be

a good data scientist, why to use python for data science.

Unit — 2: Introduction to python (14h)

What is python , features of python, history of python, writing and executing

the python program, basic syntax, variables, keywords, data types ,operators

,indentation, Conditional statements-if, if-else, nested if-else, looping

statements-for, while, break, continue, pass

Unit — 3: Control structures and strings (10h)

Strings - definition, accessing, slicing and basic operations

Lists - introduction, accessing list, operations, functions and methods,

Tuples - introduction, accessing tuple

Dictionaries - introduction, accessing values in dictionaries

Unit — 4: Functions and modules (13h)

Functions - defining a function, calling a function, types of functions, function

arguments, local and global variables, lambda and recursive functions, Modules-

math and random

 Unit-5: Classes & Objects (11h)

Classes and Objects, Class method and self-argument, class variables and object

variables, public and private data members, private methods, built-in class attributes,

static methods.

Reference Books:

1. Steven cooper--- Data Science from Scratch, Kindle edition

 2. Reemathareja—Python Programming using problem solving approach,

 Oxford Publication.

(509BCE21)

MODEL QUESTION PAPER

BA &B.Com. (C.A) DEGREE EXAMINATION

Third Year - Fifth Semester

 DATA SCIENCE USING PYTHON

Time : Three hours Max. Marks: 70

 SECTION A-(5 x 4 = 20 marks)

 Answer any FIVE of the following.

 Each question carries 4 marks.

1. What are the primary responsibilities of a data scientist in an organisation?

2. Explain the importance of data science.

3. Explain about arithmetic operators in python.

4. Explain about break and pass statements in python.

5. Explain about tuple data structure.

6. Explain about dictionaries in Python.

7. Discuss the concepts of lambda functions and their use in Python.

8. Explain the concept of recursive functions in Python.

9. Discuss the built-in class attributes in Python.

10. Explore the concept of static methods in Python classes.

SECTION B – (5 x 10 = 50 marks)

Answer any FIVE of the following questions.

Each question carries 10 marks.

11. Describe the key steps involved in the process of data science.

12. Justify why Python is a preferred programming language for data science.

13. Discuss the different types of decision-making statements in Python.

14. Elaborate on the concept of looping statements in Python.

15. Discuss the various methods available for manipulating lists in Python.

16. Explain how string accessing, slicing operations work in Python. Also explain about

 basic operations on strings.

17. Discuss the modules "math" and "random" in Python.

18. Discuss the steps involved in defining and calling a function in Python. Explain types

 of functions. Explain with examples.

19. Explain the concepts of classes and objects in object-oriented programming. Provide

an example.

20. (a) Define private methods in Python classes.

 (b) Explain the significance of the "self" argument.

CONTENTS

Lesson

No.
Title of the Lesson

Page No

From To

1. Introduction to Data Science 1.1 – 1.13

2. The Role of Data Scientist in Data Science 2.1- 2.9

3. Introduction to Python 3.1-3.24

4. Python Conditional statements 4.1-4.15

5. Python Loop and Control statements 5.1-5.16

6. Python Sting 6.1-6.19

7. Python List 7.1-7.18

8. Python Tuple 8.1-8.16

9. Python Dictionary 9.1-9.15

10. Python Function 10.1-10.16

11. Python Local and Global Variables 11.1-11.14

12. Python Module 12.1-12.19

13. Python Classes and Objects 13.1-13.20

14. Python Static Method 14.1-14.13

15. Practical Manual 15.1-15.15

LESSON- 01

INTRODUCTION TO DATA SCIENCE

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the role of data scientist in the field

of data science. The chapter began with understanding what data science, importance of data

science is and so on. After completing this chapter, the student will understand the complete

knowledge about data science and its process in business.

STRUCTURE

1.1 Introduction

1.2 What is Data Science?

 1.2.1 Pillars of Data Science

 1.2.2 Real-time Example

1.3 Importance of Data Science

 1.3.1 Data Scientist Skills

 1.3.2 Data Science in Latest Domains

 1.3.3 Data Scientist Job Role

1.4 Advantages of Data Science

1.5. Disadvantages of Data Science

1. 6 The Process of Data Science

 1.6.1 Discovery

 1.6.2 Data preparation

 1.6.3 Model Planning

 1.6.4 Model-building

 1.6.5 Operationalize

 1.6.6 Communicate results.

1.7 Well-Defined Data Science Process

1.8 Summary

1.9 Technical Terms

1.10 Self-Assessment Questions

1.11 Suggested Readings

Centre for Distance Education 1.2 Acharya Nagarjuna University

1.1. INTRODUCTION

Quantitative and statistical analysis, specialized programming, advanced analytics, artificial

intelligence (AI), and machine learning are all components of data science. These components

are combined with specialized subject matter expertise to unearth meaningful insights that are

concealed inside an organization's data. The decision-making process and the planning of

strategic actions can both benefit from these insights.

To identify trends, organizations can examine massive amounts of organized and unstructured

big data thanks to the application of data science. The result of this is that businesses can

improve their efficiency, better control their costs, discover new opportunities in the market,

and strengthen their competitive advantage. This chapter explores what is data science, the

importance of data science, and business processes steps etc.

1.2 WHAT IS DATA SCIENCE?

It is a deep study of the huge quantity of data that is known as data science. Data science

involves the collection, analysis, and interpretation of relevant insights, patterns, and trends

from large volumes of data that are either raw, structured, or unstructured. These insights and

trends can be utilized to make educated decisions and address problems that occur in the real

world.

1.2.1 Pillars of Data Science

The analysis of huge volumes of data is accomplished through the utilization of a

multidisciplinary approach that integrates concepts and procedures from a variety of domains,

including mathematics, statistics, artificial intelligence, computer engineering, and others.

Data scientists can ask and answer questions such as what occurred, why it occurred, what

will occur, and what can be done with the results with the assistance of this analysis. The

pillars of Data Science is followed and described in Figure 1.1.

 Domain Knowledge

Data science relies most on domain expertise. Understand the problem domain, which can be

medicine, finance, or retail. Domain knowledge includes knowing how many customers

bought something at an online store in each month, which can help your business decide

whether to hire more people or buy more inventory during busy periods like Black Friday

sales season.

 Math & Statistic Skills

The problem determines the math and statistics needed. Math and statistics are varied, but

you only need the essentials. Probabilities may be analysed using algebra.

 Computer Science

Data scientists need computer science expertise. No programming experience is required, but

computer knowledge is. Every aspiring data scientist should know about data storage and

processing concepts in addition to computer science fundamentals like algorithms and

software engineering principles like object-oriented programming (OOP).

 Data Science using Python 1.3 Introduction to Data Science

Fig 1.1. Pillars of Data Science

 Communication & Visualization

Data science relies on visualization to share ideas and explain data. Improve data

comprehension. Visualizing a dataset can help you understand and uncover new information.

In summary, data science involves:

 Analysing raw data and asking the right questions.

 Using efficient algorithms to model data.

 Increased data visualization for better understanding.

 Using data for informed decision-making and outcome analysis.

1.2.2 Real-time Example

Data Science uses data from e-commerce sites, surveys, social media, and internet searches.

This data access is feasible thanks to improved data collection tools.

Fig 1.2. Data Science Sectors

Centre for Distance Education 1.4 Acharya Nagarjuna University

This data helps businesses predict and profit. Data can be used to enhance sales funnels,

determine which client segments favor products, and discover which discounts customers like

best. Data science can boost company efficiency internally. Data science is the most talked

about topic nowadays and a popular career choice due to its many sectors and are shown in

Figure 1.2.

Example:

Amazon can provide suggestions based on product browsing history and customer ratings and

complete idea shown in Figure 1.3. Users can receive product recommendations based on

their preferences. This keeps consumers active on such sites and boosts corporation

profitability.

Fig 1.3. Recommendation System

Data science in healthcare is medical imaging. For diagnosis, doctors use X-rays, MRIs, and

CAT scans to visualize inside body parts. Microscopic characteristics that indicate an injury,

disease, or illness might be difficult to detect even with substantial training. X-rays may not

show a hairline fracture in a bone, therefore doctors may use data science to evaluate them.

These applications segment and detect anomalies in images.

In addition to the above examples, the number of other tasks done by the data science in

health care the complete details given in Figure 1.4.

Fig 1.4. Data Science in Health Care

 Data Science using Python 1.5 Introduction to Data Science

1.3 IMPORTANCE OF DATA SCIENCE

Companies are flooded with data. Data Science will combine methodology, technology, and

tools to gain insights. Data science is used for predictive analytics, machine learning, data

visualization, recommendation systems, fraud detection, sentiment analysis, and decision-

making in healthcare, finance, marketing, and technology. The importance of data science in

mentioned sectors are included in Figure 1.5.

Fig 1.5. Importance of Data Science in Real World

 Improved Decision Making

In today's data-driven environment, data science powers decision-making. Data science can

improve decision-making by providing analytical approaches and models to overcome

psychological barriers to risk perception and belief creation []. Its data-driven approach helps

firms realize data science's potential and align themselves. Data science helps firms make better

decisions and calculate cost-benefit ratios. Decision support systems can optimize marketing

and brand management with data science technologies like regression analysis and machine

learning. Data science may also examine huge data and quickly interpret outcomes in decision

support systems to help decision-makers develop better strategic strategies.

 Better understanding of complex systems

Complex systems are studied because they emerge, depend on beginning conditions, and have

chaotic behaviour. Even though they follow simple principles and interact, they're

unpredictable. Feature engineering in data science and machine learning identifies additional

Centre for Distance Education 1.6 Acharya Nagarjuna University

factors or simplifies the mathematics of the model's variables. Complex systems and data

science also overlap in graph analysis.

 Increased efficiency

Data science finds operational inefficiencies and bottlenecks. Optimizing workflows and

resource allocation streamlines operations, cuts costs, and boosts efficiency. A company may

utilize data science to assess its supply chain and find bottlenecks causing delays. Based on this

data, the company can improve delivery times and efficiency by changing their supply network.

 Better customer experiences

Data science helps companies understand customer behaviour, preferences, and needs. This

insight helps adjust products and services to client needs, improving happiness and loyalty. A

company can analyse client transactions and recommend products using data science. This may

increase repeat business.

 Improved risk management

Decision-makers can make educated decisions without guesswork by using data-driven

insights. Data science underpins evidence-based decision making, eliminating bias and

subjectivity.

 Descriptive analysis

Data is analysed descriptively to understand what happened or is happening. Data

visualizations include pie charts, bar charts, line graphs, tables, and produced narratives. Flight

booking services may track daily ticket sales. This service's booking spikes, slumps, and best

months will be shown using descriptive analysis.

 Predictive Analytics

Based on prior data, data science can predict future results. Analysing vast information using

machine learning algorithms helps businesses spot trends and predict future events. Data

science can help doctors anticipate who is most likely to get an illness and provide preventive

care.

 Prescriptive analysis

Prescriptive analytics enhances predictive data. It anticipates the expected outcome and advises

the best solution. It can evaluate options and suggest the best one. Graph analysis, simulation,

complicated event processing, neural networks, and machine learning recommendation engines

are used.

 Personalized Marketing and Customer Segmentation

Data science helps companies’ segment and personalize marketing. By evaluating consumer

data and behaviour, businesses may send targeted communications that boost customer

engagement and conversion. This helps them grasp individual preferences and needs. For

instance, a retail organization can use data science to identify high-value customers and create

customized marketing campaigns or loyalty programs to retain them. Customer segmentation

lets an e-commerce platform propose products based on a user's browsing history and buying

patterns.

 Efficient Resource Allocation

Data science helps firms allocate resources by analysing demand, supply chain, and

 Data Science using Python 1.7 Introduction to Data Science

resource utilization. Waste is eliminated, operating efficiency is increased, and inventory,

personnel, and equipment are properly allocated.

 Continuous Improvement

Data science helps organizations with a development culture. Data analysis helps organizations

evaluate performance, track progress, and identify opportunities for improvement. Data-driven

strategies promote continuous development and innovation.

 Innovation and New Opportunities

Finally, data science may help companies innovate and find new opportunities. Data science is

driving innovation by giving companies new perspectives and untapped potential. Data science

may also identify new company opportunities by analysing competition, market, and consumer

behaviour. Data science-driven innovation goes beyond product production. In process

innovation, firms use data analysis to identify inefficiencies, bottlenecks, and automation or

optimization opportunities.

1.4 ADVANTAGES OF DATA SCIENCE

Today's world, data is becoming so vast, i.e., approximately 2.5 quintals bytes of data is

generating on every day, which led to data explosion. It is estimated as per research, that by

2020, 1.7 MB of data will be created every single second, by a single person on earth. Every

Company requires data to work, grow, and improve their businesses. Now, handling such a

huge amount of data is a challenging task for every organization. So, to handle, process, and

analysis of this, we required some complex, powerful, and efficient algorithms and

technology, and that technology came into existence as data Science. Data science is

revolutionizing the way companies operate. Many businesses, regardless of size, need a

robust data science strategy to drive growth and maintain a competitive edge. And because of

this huge amount of data the value of the field of Data Science has several advantages and

disadvantages which are shown in Table 1. 1.

Table 1.1. Advantages and disadvantages of Data Science

Advantages Disadvantages

Discover unknown transformative patterns Data Privacy

Improving business decisions Cost

Innovate new products and solutions. Complete Understanding is not Possible

Innovate new products and solutions

Giving internal financial information

Mitigate Fraud and Risks

Real-time optimization

Multiple Job Options

Business and Hiring benefits

Centre for Distance Education 1.8 Acharya Nagarjuna University

 Discover unknown transformative patterns.

Data science allows businesses to uncover new patterns and relationships that have the potential

to transform the organization. It can reveal low-cost changes to resource management for

maximum impact on profit margins. For example, an e-commerce company uses data science

to discover that too many customer queries are being generated after business hours.

Investigations reveal that customers are more likely to purchase if they receive a prompt

response instead of an answer the next business day. By implementing 24/7 customer service,

the business grows its revenue by 30%.

 Improving business decisions

Data and risk analysis techniques help in making wise business decisions. Higher-ups can make

use of the data analysis and render unbiased support for complex business decisions.

 Innovate new products and solutions.

Data science can reveal gaps and problems that would otherwise go unnoticed. Greater insight

into purchase decisions, customer feedback, and business processes can drive innovation

in internal operations and external solutions. For example, an online payment solution uses data

science to collate and analyze customer comments about the company on social media.

Analysis reveals that customers forget passwords during peak purchase periods and are

unhappy with the current password retrieval system. The company can innovate a better

solution and see a significant increase in customer satisfaction.

 Giving internal financial information

Businesses can make the most of the benefits of data science in developing financial reports

and examining economic patterns. and making projections for more-informed decisions on

spending budgets. This ultimately results in generating income that is fully optimized and gives

a clear picture of internal financial conditions.

 Mitigate Fraud and Risks

Your company may be able to strengthen security and safeguard potentially sensitive

information by using data science. Machine learning algorithms can detect fraud by employing

analysis of user behavior. Machine learning may be able to capture these events with high

accuracy if big clumps of data are generated from these cases.

 Real-time optimization

It’s very challenging for businesses, especially large-scale enterprises, to respond to changing

conditions in real-time. This can cause significant losses or disruptions in business activity.

Data science can help companies predict change and react optimally to different circumstances.

For example, a truck-based shipping company uses data science to reduce downtime when

trucks break down. They identify the routes and shift patterns that lead to faster breakdowns

and tweak truck schedules. They also set up an inventory of common spare parts that need

frequent replacement so trucks can be repaired faster.

 Multiple Job Options

 Being in demand, it has given rise to many career opportunities in its various fields. Some of

them are Data Scientist, Data Analyst, Research Analyst, Business Analyst, Analytics Manager,

Big Data Engineer, etc.

 Data Science using Python 1.9 Introduction to Data Science

 Business benefits

Data Science helps organizations know how and when their products sell best and that’s why

the products are delivered always to the right place and right time. Faster and better decisions

are taken by the organization to improve efficiency and earn higher profits.

 Highly Paid jobs & career opportunities

 As Data Scientist continues to be the sexiest job and the salaries for this position are also

grand. According to a Dice Salary Survey, the annual average salary of a Data Scientist is

$106,000 per year.

 Hiring benefits

 It has made it comparatively easier to sort data and look for the best candidates for an

organization. Big Data and data mining have made processing and selection of CVs, aptitude

tests and games easier for the recruitment teams.

1.5. DISADVANTAGES OF DATA SCIENCE

Everything that comes with several benefits also has some consequences. So, let’s have a look

at some of the disadvantages of Data Science: -

 Data Privacy

Data is the core component that can increase productivity and the revenue of industry by

making game-changing business decisions. But the information or the insights obtained from

the data can be misused against any organization or a group of people or any committee etc.

Extracted information from the structured as well as unstructured data for further use can also

be misused against a group of people of a country or some committee.

 Cost

The tools used for data science and analytics can cost a lot to an organization as some of the

tools are complex and require the people to undergo training in order to use them. Also, it is

very difficult to select the right tools according to the circumstances because their selection is

based on the proper knowledge of the tools as well as their accuracy in analyzing the data and

extracting information.

 Complete Understanding is not Possible.

Data science is vast. It is utilized in mathematics, statistics as well as computer science. Thus,

being perfect in all fields is not a simple task.

1. 6 THE PROCESS OF DATA SCIENCE

Data science is a methodical process that turns data into useful insights. From identifying the

problem and analyzing the data to designing models, evaluating outcomes, and deploying

Centre for Distance Education 1.10 Acharya Nagarjuna University

solutions, each step is critical to data value extraction. The process involves the following

phases and are shown in Figure 1.6.

1.6.1 Discovery

 First comes discovery, which includes asking the proper questions. Before starting a data

science project, you must identify its requirements, priorities, and budget. In this phase, we

determine all project needs, such as the amount of people, technology, time, data, and end

goal, and then frame the business challenge on a first hypothesis level.

1.6.2 Data preparation

Data preparation cleans, standardizes, and enriches raw data for analytics and data science.

Data analysts struggle to get relevant data before analyzing. It takes data scientists about 80%

of their work to prepare data for machine learning (ML) models. The 80/20 rule: Business

analysis takes only 20% of data analysts' and scientists' time. The rest is spent gathering,

cleaning, and organizing data.

This phase requires the following tasks:

 Cleaning of data

 Data reduction

 Integration and manipulation of data

 Data cleansing

It handles missing values, outliers, and discrepancies. Format data for analysis.

Additional actions include removing duplicate values, irrelevant observations, missing

values, reformatting data types, filtering undesired outliers, reformatting strings,

validating, and more. To efficiently store huge amounts of originally sourced data as

reduced data, data reduction techniques eliminate redundancy. More correctly, data

reduction uses data deduplication and data consolidation to achieve its goals.

 Data integration

This involves merging and harmonizing data from numerous sources into a coherent

format for analytical, operational, and decision-making reasons. Steps in data integration

include:

1.6.3 Model Planning

We must determine the strategies and procedures to construct input variable relationships in

this phase. Exploratory data analytics (EDA) will use statistical formulas and visualization

tools to identify variable relationships and learn from data.

1.6.4 Model-building

 This phase begins model building. Data analytics requires model building to gain insights

and inform company decisions and strategy. The data science team must create training,

 Data Science using Python 1.11 Introduction to Data Science

testing, and production data sets during this phase. These data sets let data scientists train an

analytical approach and save some data for model testing. Data analytics model creation aims

for high accuracy on training data and generalization and performance on fresh data. Instead

of memorizing the training data, the goal is to create a model that captures data patterns and

correlations.

Fig 1.6. Key Steps in the Data Science Process

1.6.5 Operationalize

The project's final reports, briefings, code, and technical documents will be delivered in this

phase. Before deployment, this phase gives you a small-scale view of project performance

and other components. If your model performed better than predicted, you can start

measuring real-world efficacy with a small-scale pilot project in a real-time production

setting. This will show any unexpected limits that must be considered before using your

model. Processing model outputs online outside the sandbox requires an appropriate API.

1.6.6 Communicate results:

In this phase, we'll see if we met our first target. Our results and conclusion will be shared

with the business team.

If your procedure must be improved to improve results, start over at phase one with a more

specific problem. Each refinement brings your model closer to real-time deployment.

1.7 WELL-DEFINED DATA SCIENCE PROCESS

By following a well-defined process and using proper methodologies, organizations may use

data science to make informed decisions, acquire a competitive edge, and uncover new

opportunities in the data-driven era.

Centre for Distance Education 1.12 Acharya Nagarjuna University

A clear Data Science approach has many benefits and are described below and shown in

Figure 1.7. :

 Efficiency: A planned methodology ensures project efficiency and effectiveness. This

aids commercial decision-making.

 Collaboration: A defined procedure helps stakeholders collaborate with the data

science team.

 Reproducibility: A clear process helps other data scientists understand and replicate

it.

 Domain Agnostic: Data Science is domain neutral, meaning it may be used to any

industry having data available]. This makes Data Science useful for tackling

challenges across fields.

 Reduces errors: This technique minimizes analysis errors and biases. Data scientists

can spot and fix mistakes early by breaking down the task into smaller pieces.

 Increases transparency: Data science transparency increases by explaining how

results were obtained. Establishing stakeholder trust and credibility is crucial.

 Enables continuous improvement: Data scientists improve performance by

evaluating and refining models. This helps companies outperform competitors and

make better judgments.

Fig 1.7. Benefits of Well-Defined Data Science

 Data Science using Python 1.13 Introduction to Data Science

1.8 SUMMARY

Our world is digital and will become increasingly so. Data science, which helps organizations

obtain insight and intelligence from their own records, will increase and become even more

vital, helping them grow and compete. Data scientists are and will be essential to every IT

organization, making data science one of the most promising fields in research and enabling

the development of new technologies like AI and ML.Data science has several benefits for

companies in various industries. Data science uses advanced statistical analysis, machine

learning, and computer science to help organizations enhance decision-making, efficiency,

customer experience, competitiveness, and new opportunities. Data-driven insights can

improve decision-making, identify inefficiencies, and optimize operations to save money.

Data science helps firms customize marketing strategies, forecast results, improve healthcare

service, spend resources efficiently, and foster a continuous improvement culture.

1.9 TECHNICAL TERMS

Data Science, Machine Learning, Deep Learning, Artificial Intelligence, Health Care,

Business Process, Efficiency and Collaboration.

1.10 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Illustrate about data science process.

2. Describe about importance of data science.

3. Explain about advantages and disadvantages of data science/

 Short Notes:

1. Write is data science.

2. Discuss about applications of data science.

3. List out benefits of well-defined data science process.

1.11 SUGGESTED READINGS

1. Steven cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. "Python Data Science Handbook" by Jake VanderPlas - This comprehensive book

covers essential tools and techniques for data science in Python, including NumPy,

pandas, matplotlib, scikit-learn, and more.

4. "Data Science from Scratch: First Principles with Python" by Joel Grus - This book

teaches data science concepts from the ground up using Python, covering topics like

statistics, machine learning, and data manipulation.

 Dr. KAMPA LAVANYA

LESSON- 2

THE ROLE OF DATA SCIENTIST IN DATA

SCIENCE

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the role of data scientist in the field of data

science. The chapter began with understanding who is data scientist, responsibilities of data

scientist, qualifications to become a data scientist and so on. After completing this chapter,

the student will understand how to be a data scientist how to become a good data scientist.

2.1 Introduction

2.2 Data Scientist Responsibility

 2.2.1 Types of Data Scientists

 2.2.2 Differences between Data Scientist and Data Analytics.

 2.2.3. Business Process with A Data Scientist

 2.2.4. Responsibilities of Data Scientist

2.3 Qualification of Data Scientist

 2.3.1 Data Scientist Skills

 2.3.2 Data Science in Latest Domains

 2.3.3 Data Scientist Job Role

2.4 Would You Be a Good Data Scientist

2.5 Summary

2.6 Technical Terms

2.7 Self-Assessment Questions

2.8 Suggested Readings

2.1. INTRODUCTION

A field of study known as Data Science integrates several disciplines, including statistics, data

analysis, and machine learning, to extract insights and knowledge from data. Data science is a

multidisciplinary discipline that extracts insights and knowledge from data using computational

and statistical methods. It requires domain expertise in addition to skills and knowledge from

diverse disciplines, including computer science, statistics, and mathematics. Data science

encompasses a series of sequential stages, which comprise data collection, cleansing,

investigation, analysis, and interpretation.

The ability to create code is the most fundamental and ubiquitous talent that data scientists

possess. This may be less true in five years, when many more people will have the title "data

scientist" on their business cards. More persistent will be the requirement for data scientists to

communicate in language that all their stakeholders understand, as well as to exhibit the

specialized abilities required for storytelling with data, whether verbally, visually, or—

ideally—both.

This chapter will cover the basic responsibilities of data scientist. Also provided qualifications

and tips to become a good data scientist.

Centre for Distance Education 2.2 Acharya Nagarjuna University

2.2 DATA SCIENTIST RESPONSIBILITY

Data scientists work differently based on the organization's size and needs. They usually

follow the data science process, although details vary. A data scientist may collaborate with

analysts, engineers, machine learning experts, and statisticians to complete the data science

process and meet business goals in bigger data science teams. Data scientists use a variety of

methods, tools, and technologies. They choose the ideal combinations for faster, more

accurate outcomes based on the problem. Data scientists use machine learning to model and

interpret data, unlike data analysts. Synthesize and convey results to key stakeholders to

promote organizational strategic decision-making. Some of the data scientist in present

market shown in Figure 2.1.

2.2.1. Types of Data Scientists

We can distinguish three main types of data scientists:

1. Traditional data scientists

2. Research scientists.

3. Applied scientists.

4. Engineering data scientist

5. Operational data scientists

6. Product-focused data scientists

 Fig 2.1. Data Scientists in Market

 Traditional data scientists

Traditional data scientists explore data, perform complex statistical modelling, A/B test, and

construct and tune machine learning models.

 Data Science Using Python 2.3 The Role of Data Sci...

 Research scientists.

Focus on creating new machine learning models for huge enterprises. This describes a data

scientist who seeks innovative methods and algorithms. The typical data scientist has a PhD

in machine learning and works for Google, Deep Mind, or IBM. This is the most glamorous

data scientist since they understand data science and have strong academic credentials.

However, most firms don't need their whole skillset or may not have the infrastructure to

support them. Companies often hire someone with these talents when they need an

operational or product-focused data scientist.

 Applied scientists.

Big tech and larger organizations hire data scientists for one of the highest-paying

occupations. These experts produce models using data science and software engineering.

Applied scientists can model data for machine learning, choose an algorithm, train the model,

fine-tune hyperparameters, and deploy the model.

 Engineering data scientist

This job is very technical. Data scientists like this are similar to data engineers (some say

they are the same). Engineering data scientists ensure system stability and construct scalable

pipelines.

 Operational data scientists

These data scientists know the business and its systems. Technical issues become business

goals, and data science helps a company enhance efficiency or accomplish goals. An

operational data scientist may utilize more advanced modelling than a business analyst, who

may use dashboards.

 Product-focused data scientists

These data scientists develop or improve products using data science. They may be on a

company's product team. This type of data scientist develops a company's website

recommendation system.

2.2.2. Differences between Data Scientist and Data Analytics

The comparison of Data Scientist and Data Analytics is shown in Table 2.1.

Table 2.1. Difference between Data Scientist and Data Analytics

Data Scientist Data Analytics

Conduct research on both historical

and contemporary patterns.

Investigate and retrieve the information.

Create reports on both the operations

and the finances.

An examination of the data collected

statistically.

Utilize applications like Excel to

carry out forecasting.

Support for the training and development of

deep learning frameworks.

Centre for Distance Education 2.4 Acharya Nagarjuna University

Make use of infographics.

Build an architecture that can manage

massive amounts of data.

Understand the data and explain in a

clear manner.

Create automation that makes the process of

data collection and processing more

efficient.

Through the examination of

documents and the correction of data

corruption, carry out data screening.

Make your observations known to the

leadership team and help with making

decisions based on the data.

2.2.3 Business Process with a Data Scientist

A data scientist uses several techniques to solve business problems, such as:

 By asking the proper questions and acquiring insight, the data scientist determines the

problem before beginning the process of collecting and analyzing data.

 The appropriate combination of factors and data sets is then identified by the data

scientist.

 The data scientist collects both organized and unstructured data from a variety of sources,

including public and enterprise data.

 After gathering the data, the data scientist prepares it for analysis by processing and

formatting the raw data. To ensure consistency, accuracy, and completeness, the data

must be cleaned and validated.

 The data is input into the analytical tool once it has been transformed into a useable

format.

 The data scientist analyzes the data to identify possibilities and solutions after it has been

fully produced.

 The data scientists complete the work by explaining the findings and producing the

insights to be shared with the relevant parties.

2.2.4 Responsibilities of Data Scientist

Data scientists are crucial to ensuring that businesses make well-informed decisions. They

collaborate closely with company executives to pinpoint particular goals, like determining

client segmentation and promoting enhancements to goods and services. Data scientists may

analyze huge datasets to find trends and insights that support businesses in making wise

decisions. They do this by using sophisticated machine learning algorithms and statistical

models. A mix of technical expertise and understanding of data interpretation and

visualization is typically possessed by data scientists. They need to be knowledgeable with

database management systems, machine learning techniques, programming languages, and

statistical analysis.

 Data Science Using Python 2.5 The Role of Data Sci...

Let's examine the duties performed by a qualified data scientist in summary form.

 Compiling, sanitizing, and arranging data for prescriptive and predictive models.

 Examining enormous volumes of data to find patterns and trends.

 Constructing the data and turning it into information that can be used by using

programming languages.

 Collaborating with stakeholders to comprehend business issues and create solutions

based on facts.

 Creating predictive models to predict future trends using statistical methods.

 Creating, preserving, and keeping an eye on machine learning models. Creating data-

driven solutions by developing and applying cutting-edge machine learning

algorithms and other analytical techniques.

 Use a range of data mining technologies to find hidden patterns and trends in large

datasets.

 Creating and approving data solutions using dashboards, reports, presentations, and

data visualizations.

2.3 QUALIFICATION OF DATA SCIENTIST

Degrees in quantitative disciplines like math, statistics, computer science, physics, or

information technology are ideal for anyone who wants to work in data science. By

completing classes in college, you can frequently specialize in a particular field of data

science. If you want to work as a marketing analyst, for example, business and marketing

courses can be helpful. If you want to go into data reporting, a foundation in journalism and

writing-intensive disciplines can be helpful. Since data science is used in all industries, you

can have a strong foundation to build from if you have a particular understanding of a field

you enjoy. For instance, if you want to work in data science in an investment bank, having a

background in finance is ideal.

When transitioning into more business-focused professions (as opposed to focusing on

analysis or engineering), advanced degrees can be helpful for upward mobility. To have a

deeper understanding of the business aspect of their profession, data scientists frequently seek

Master of Business Administration (MBA) degrees.

If you're interested in pursuing a career in data science, review the requirements listed below:

 Proficiency in statistics, mathematics, computer science, or information technology.

 Strong problem-solving abilities

 Capable of working in a team.

 Enjoy manipulating data.

 Possess strong communication abilities.

 Willing to pick up the newest tech.

Centre for Distance Education 2.6 Acharya Nagarjuna University

2.3.1 Data Scientist Skills

Major competencies are required for employment as a data scientist. Candidates for various

data science jobs must be well-versed in the most recent developments in technology. The

following are some of the key competencies required to succeed in this department:

 Statistics

Academic and professional statistics collects, analyzes, and interprets data. Statistics

professionals must also share their findings. Thus, data scientists need statistics to collect,

evaluate, and report on vast amounts of organized and unstructured data.Data scientists must

master statistical methods to identify hidden patterns and correlations between data features.

 Descriptive Statistics

A data set's basic properties are analysed and identified using descriptive statistics.

Descriptive statistics summarize and visualize data. Many raw data sets are hard to

summarize and communicate. Descriptive statistics provide effective data presentation.

 Probability Theory

According to Encyclopaedia Britannica, open_in_new mathematics measures random event

probability. A random experiment is a physical condition with an unpredicted outcome. Like

coin flipping. Probability is a number between zero and one that indicates the possibility of

an event. Higher probabilities (closer to one) increase likelihood. Flipping a coin has 0.5

probability since heads and tails are equally likely.

 Machine Learning

Data and algorithms are used in machine learning (ML) to teach AI to learn like humans,

enhancing its accuracy. Machine learning algorithms usually predict or classify. Your

algorithm will estimate a pattern from labeled or unlabeled input data. Data scientists must

understand model-building methods to train machines.

 Computer Science

A Data Scientist must employ software engineering, database system, AI, and numerical

analysis concepts.

 Programming

Data Scientists need at least one programming language to use the proper algorithms. They

must be comfortable writing Python, R, and SQL code.

 Analytical and Critical Thinking

Business problems require analytical thinking from a Data Scientist. Data Scientists must

think critically before drawing conclusions.

 Interpersonal Skills

Data Scientists must communicate well with various company audiences.

2.3.2 Data Science in Latest Domains

Here, data science is investigated in a wide range of sectors and offers some of the most

recent developments based on data science's daily activities.

 Data Science Using Python 2.7 The Role of Data Sci...

The domains include the following: business, education, healthcare, and the IT industry and

complete details is shown in Table 2.2.

 Table 2.2. Data Science in Latest Domains

Education Business Healthcare IT industry

 New Learning

Methods

 Predictive

Analytics for

product outcomes

 Managed and

analyzed effectively

to obtain true

findings.

 analysing data

 Finding the

Issues of

Students

 Improve

decision-making

across the

organization

 managed demograph

ics, treatment plans,

outcomes of medical

exams, insurance

data of health care

 Developing ne

w strategies.

 Improve the

Educational

Organization

 improve

consumer

engagement,

corporate

performance, and

boost revenue

 Decision-making for

the healthcare

system by offering

useful insights.

 Preparing data

for analysis,

visualization

of data.

 Provide

Opportunities

for Students

 Identifying and

refining target

audiences

 creating a complete

picture of clients,

patients, and

professionals

 building model

s with data

using different

programming

languages,

 Continuous

Monitoring

and Updating

 Managing

business

efficiency

 improve healthcare

quality

 Deploying mo

dels into

application.

 Observing

and

Evaluating

Teacher

Performance

 Automating

Recruiting

Process

 medical

improvements

 Testing

models

2.3.3 Data Scientist Job Role

Data Scientists address business challenges with statistics and arithmetic. Data scientists

should be able to write business proposals, design predictive models, solve business

challenges, and tell stories to visualize data for clients. Data Scientists with computer

programming skills can improve corporate decisions, address real-world problems, and apply

their knowledge. Statisticians develop models by applying statistical approaches to data.

https://www.future-processing.com/blog/data-visualisation-unlock-insights-in-your-data/
https://www.future-processing.com/blog/data-visualisation-unlock-insights-in-your-data/

Centre for Distance Education 2.8 Acharya Nagarjuna University

Computer programming, statistics, and mathematics are needed for a Data Scientist. The

complete job role related to Data Scientist is described in Table 2.3.

Table 2.3. Data Scientist Job Role

Job Role Data Scientist

Eligibility
 Bachelor’s degree in computer science or relevant field

 Certification course in Data science with relevant project

Responsibilities

 Analyzing data and extract important insights from it.

 Decision making using the data.

 Using various tools and techniques to ensure maximum

use of data.

Average salary  5 to 6 Lacs per annum (for freshers)

Experience  0-1 years for freshers

2.4 WOULD YOU BE A GOOD DATA SCIENTIST

Although data scientists have distinct skills or jobs, they all need a few things to succeed.

Their business partners must help them integrate into the core business and product line. Data

partners include software application and data infrastructure engineers. These professionals

assure accurate, full, and accessible foundational data instrumentation and feeds. They

require leaders who will invest in data quality, management, visualization and access

platforms, and a culture that values data in business and product development. This requires

allocating time for data and measurement during development, which is often overlooked.

The advantages and disadvantages of a good data scientist is shown in Table 2.4.

Table 2.4. Advantages and Disadvantages of a Good Data Scientist.

Advantages Disadvantages

 Discover unknown transformative

patterns

 Data Privacy

 Improving business decisions  Cost

 Innovate new products and solutions.

 Complete Understanding is not

Possible

 Innovate new products and solutions

 Giving internal financial information

 Mitigate Fraud and Risks

 Real-time optimization

 Multiple Job Options

 Business and Hiring benefits

Finally, when employing data scientists, look for people that love solving issues, not specific

answers, or approaches, and who are very collaborative. Whatever type of data scientist you

 Data Science Using Python 2.9 The Role of Data Sci...

hire, they must be able to collaborate with engineers, product managers, marketers, and

executive teams. Finally, seek honest people. We must appreciate and use data for good as a

society. Data scientists are responsible for data governance inside and outside their company.

2.5 SUMMARY

The position of a Data Scientist is necessary for companies that want to make decisions based

on the data they collect. Data scientists are tasked with the responsibility of gathering,

organizing, analyzing, and interpreting data to uncover patterns through correlations and

trends. The development of data processing pipelines, the design of reports and dashboards,

and the creation of models to forecast future trends are all among their responsibilities. To be

successful in the industry, they need to understand the business context as well as the

requirements of the client. In this chapter, we have seen complete responsibilities, role,

qualifications, and other details regard data scientist.

2.6 TECHNICAL TERMS

Data Scientist, Machine Learning, Deep Learning, Data Analyst, Job Role, Responsibility,

Good Scientist.

2.7 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Illustrate about responsibilities of data scientist.

2. Describe about qualifications of data scientist.

3. Explain about how to become a good data scientist.

 Short Notes:

 Write about skills required for data scientist.

1. Discuss about business process followed by data scientist.

2. List out advantages and disadvantages of good data scientist.

2.8 SUGGESTED READINGS

1. Steven cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. "Python for Data Analysis" by Wes McKinney - This book focuses on practical data

analysis using Python's tools and libraries, particularly pandas.

4. "Data Science Handbook" by Jake VanderPlas - This book covers various aspects of data

science, including data manipulation, visualization, and machine learning using Python.

5. "Introduction to Machine Learning with Python: A Guide for Data Scientists" by Andreas

C. Müller and Sarah Guido - This book provides an introduction to machine learning

concepts and their implementation in Python using libraries like scikit-learn.

6. "Python Data Science Handbook" by Jake VanderPlas - This comprehensive book covers

essential tools and techniques for data science in Python, including NumPy, pandas,

matplotlib, scikit-learn, and more.

Dr. KAMPA LAVANYA

LESSON- 3

INTRODUCTION TO PYTHON

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the introductory concept of Python

programming. The chapter began with an understanding of what is python, feature of python,

History of python and so on. After completing this chapter, the student will understand the

complete basic concepts of python in detail with suitable examples.

STRUCTURE

3.1 Introduction

3.2 What is Python?

 3.2.1 Advantages and Disadvantages of Python

 3.2.2 Companies used by Python.

 3.2.3 Applications of Python.

3.3 Features of Python

3.4 History of Python

3.5 How to Write and Run a Python Script

 3.5.1 The operating system command-line or Terminal

 3.5.2 The Python Program Create and Run on Interactive Shell

 3.5.3 How to Run Python Program on IDLE?

3.6 Variables, Keywords, Datatypes, Operators in Python

 3.6.1 Python Variables

 3.6.2 Python Keywords

 3.6.3 Python Data Types

3.7 Indentation in Python

 3.7.1 Types of Indentation

 3.7.2. Common Indentation Errors

3.8 Summary

3.9 Technical Terms

3.10 Self-Assessment Questions

3.11 Suggested Readings

Data Science using Python 3.2 Introduction to Python

3.1. INTRODUCTION

Python is a high-level computer language that is interpreted and object-oriented. Its semantics

change over time. Its high-level built-in data structures, along with dynamic typing and

dynamic binding, make it a great choice for Rapid Application Development. Python's

grammar is simple and easy to learn. It focuses on readability, which lowers the cost of

maintaining programs.

Python lets you use modules and packages, which makes it easier to break up programs into

smaller pieces and reuse code. For all major systems, you can get the Python interpreter and

the large standard library for free in source or binary form, and you can share them with

anyone else.

This chapter will cover the major basic concept of python programming includes what is

python, history of python, advantages and disadvantages of python, applications of python

etc.

3.2. WHAT IS PYTHON?

Python is a high-level, interpreted, object-oriented language with dynamic semantics. Its

dynamic typing and dynamic binding, along with its high-level built-in data structures, make

it an appealing language for Rapid Application Development and for usage as a scripting or

glue language to join existing components. Because of its straightforward, basic syntax,

Python promotes readability, which lowers software maintenance costs.

Python's support for packages and modules promotes code reuse and program modularity.

The large standard library and the Python interpreter are freely distributable and accessible

for free on all major platforms in source or binary form.

3.1.1. Advantages and Disadvantages of Python

Python language is holds number of advantages and disadvantages which are shown in Table

3.1.

 Table 3.1. Advantages and Disadvantages of Python

Advantages Disadvantages

1. Easy to learn, read, and understand. 1. Restrictions in design

2. Versatile and open source 2. Memory inefficient

3. Improves productivity. 3. Weak mobile computing

4. Supports libraries. 4. Runtime errors

5. Huge library 5. Slow execution speed

6. Strong community

7. Interpreted language.

Centre for Distance Education 3.3 Acharya Nagarjuna University

3.1.2. Companies used by Python.

This is a list of the best companies that use Python on a regular basis. Some of the names on

the list provided below may surprise you which are shown in Figure 3.1.

 Facebook

 Instagram

 Spotify

 Reddit

 Uber

 Netflix

 Google

 Dropbox

Fig.3.1. Companies Use Python

3.1.3. Applications of Python

Python is emerging language and is used in wide range applications and are described

detailed in below and is shown in Figure 3.2.

 Web Development

Python's simplicity and features make it popular for web development. Python frameworks

allow them to build user-friendly dynamic websites. The frameworks include Django for

backend development and Flask for frontend. Because Python is easy to deploy, scalable, and

efficient, most online companies utilize it as their primary technology. Top Python

applications include web development, which is used across the business to build effective

websites.

Data Science using Python 3.4 Introduction to Python

 Data Science

Python snippets help data scientists develop effective AI models. Its simplicity lets

developers design complicated algorithms. Data science creates models and neural networks

that learn like human brains but are faster. It helps organizations make decisions by

extracting patterns from prior data. This field helps organizations invest in the future.

 Artificial Intelligence and Machine Learning

Data analysis and machine learning specialists can use Pandas and TensorFlow for statistical

analysis, data manipulation, etc. One of the most popular programming languages is Python.

The language of AI and ML is Python. Python has helped this field with its many libraries

and community support. Python use will rise as artificial intelligence and machine learning

evolve significantly.

 Game Development

Python developers can use Pygame to create 2D and 3D games. Pirates of the Caribbean,

Battlefield 2, and others are popular Python games. Pygame is a Python library for making

fun games. Since the gaming industry is growing, these types of development have become

more popular. This package makes game development easy, so you can try building some

simple games.

 Fig 3.2. Applications of Python

Centre for Distance Education 3.5 Acharya Nagarjuna University

3.3 FEATURES OF PYTHON

There are several characteristics that distinguish the Python programming language from

others the main reason is its features and described below and shown in Figure 3.3.

 Popularity

Python is the fourth most popular and fastest-growing programming language, according to

the Stack Overflow Developer Survey 2022. Businesses including Google, Instagram,

Netflix, and Spotify use it.

 Interpretation

Python is an interpreted language; unlike compilers, which need the creation of machine code

from the source code before it can be executed, Python passes directly to the interpreter,

simplifying and speeding up the execution process.

 Open Source

The fact that Python is a free language created under an open-source license certified by OSI

is among its strongest features.

 Portability

Major trouble comes in transferring a code from one platform to another without making

blunders in the command. Python programming language, being a portable code can easily be

transferred without making any errors.

 Simplicity

The only programming language that is similar to English is Python. It's so simple to read and

comprehend. The Python programming language utilizes fewer keywords than C++ or Java.

As a result, developers everywhere now favor the Python language above all others.

 A high-level language

Compared to several other programming languages, Python is more similar to human

languages. As a result, its core features, such memory management and architecture, are

unimportant to programmers.

 An object-oriented language

Python is a programming language that supports a variety of programming styles, including

structured and functional programming, in addition to the standard object-oriented

programming paradigm.

Data Science using Python 3.6 Introduction to Python

Fig 3.3. Features of Python

3.4 HISTORY OF PYTHON

Python was created by Guido van Rossum in 1980s. While in the Netherlands' National

Research Institute for Mathematics and Computer Science, he created Python, an easy-to-

read and use programming language. This programming language was called after the

Pythons from Monty Python's Flying Circus, the founder's favorite comedians.

The first version, launched in 1991, contained few built-in data types and rudimentary

capabilities. Python 1.0 was introduced in 1994 with map, lambda, and filter functions after

scientists adopted it for numerical computations and data analysis. After that, adding features

and releasing updated Python versions became popular. Python 1.0 introduced map, filter,

and reduce methods in 1994 to process lists. Unicode support and a shorter list loop were

added to Python 2.0 on October 16, 2000. Python 3.0 debuted December 3, 2008. It added

print and number division support and error handling.

Python's new features benefit developers and boost performance. Python has grown in

popularity and is a challenging programming language. It's in demand in machine learning,

AI, data analysis, web development, and more, offering high-paying jobs. Python became the

major programming language for many programmers and developers worldwide.

3.5 HOW TO WRITE AND RUN A PYTHON SCRIPT

Python programmers need to be familiar with all possible script and code execution

scenarios. There is no other way to confirm that the code is functioning as intended. The

Python programs are executed by the Python interpreter. A Python interpreter is a software

that functions as a bridge between computer hardware and Python programs.

Centre for Distance Education 3.7 Acharya Nagarjuna University

Here, we'll go over the various methods for executing Python programs. The simple program

is created using notepad is shown in Figure 3.4.

 The operating system command-line or terminal.

 The Python interactive mode.

 The IDE

Fig 3.4. A sample python program created and saved on notepad.

3.5.1 The operating system command-line or Terminal

Since the Python shell loses all the code we write when the session is closed, we can run the

Python code using a command line. Thus, using plain text files to write Python code is an

excellent idea. The text file needs to be saved with the.py suffix.

The Python print statement is written and saved in the working directory as

welcomepython.py. We are going to use the command-line to execute this file now.

To run a Python script, open a command line. To run the file, we must input the file name and

then Python. Once you press the enter key, the result will look like this if there are no errors

in the file and is shown in Figure 3.5.

Data Science using Python 3.8 Introduction to Python

Fig 3.5. Command Line to Run python program.

3.5.2 The Python Program Create and Run on Interactive Shell

We can utilize the Python interactive session to write and execute the Python code. To launch

an interactive Python session, simply select a command-line or terminal from the Start menu,

type python, and hit the Enter key. It is a fantastic development tool because it enables us to

review every line of code. However, all of our written code will be lost when the session

ends. To exit the interactive shell, type quit(), exit(), or press the Ctrl+Z key.

This is an illustration of how to use an interactive shell to run Python code is shown in Figure

3.6.

Fig 3.6. Create and Run python program in Interactive Shell.

Centre for Distance Education 3.9 Acharya Nagarjuna University

3.5.3 How to Run Python Program on IDLE?

Windows and Mac Python installations contain Python IDLE. If you use Linux, you should

be able to utilize your package manager to locate and download Python IDLE. After

installation, Python IDLE can be used as a file editor or as an interactive interpreter.

Python is included with DLE, an Integrated Development and Learning Environment. A

complete development environment for authoring, debugging, and testing code is offered by

IDLE.

You must do the following actions to launch a Python application on IDLE:

Step 1: Launch the Python IDLE first. Since IDLE operates in the shell by default, this

window will appear on your screen.

Step 2: Using the IDLE, we can create and run Python scripts and see the results directly on

the screen, and is shown in Figure 3.7.

Fig 3.7. Create Python scripts in IDE.

Step 3: Open a new file by selecting File → New File in order to run a whole Python

program on IDLE.

Step 4: Write your Python program in the "New File" that appears when the previous step is

completed shown in Figure 3.8.

Data Science using Python 3.10 Introduction to Python

Step5: Save your file in this step. It is saved here under the filename welcomepython.py.

Step 6: Click RUN → Run Module to start the process shown in Figure 3.9.

Step 7: The IDLE Shell will display the output.

You can run Python applications with ease by following the instructions in the description

above, which include utilizing text editors, IDEs, or the command line. You can become

more adept at executing Python code and utilizing its features to take on a variety of tasks

and challenges with practice and experimentation.

Fig 3.8. Create and Save Python Scripts in new file of IDE.

Fig 3.9. Run Python Scripts in IDE.

Centre for Distance Education 3.11 Acharya Nagarjuna University

One of the most important skills for anyone studying or using Python is the ability to run

programs. Knowing how to run Python code is essential, regardless of your level of

experience—whether you're a novice learning the fundamentals of the language or an expert

in creating complex apps.

3.6 VARIABLES, KEYWORDS, DATATYPES, OPERATORS IN PYTHON

The next section goes over Python's operators, datatypes, variables, and keywords.

3.6.1 Python Variables

A memory location set aside to hold a value is called a variable. Python's variable type is

determined by the values provided to it, unlike other programming languages where variables

need to have their types explicitly stated. Python does not require an explicit declaration in

order to reserve memory.

Assigning value to variables:

The type of variable is automatically determined by the interpreter based on the data it holds

or is assigned. The equal sign(=), also referred to as the assignment operator, is used to set a

value for the variable.

The following example demonstrates how to declare variables and give them values and is

shown in Figure 3.10:

Fig 3.10. Example of Variable Declaration and Assignment

3.6.2 Python Keywords

Each language has words and rules that make sense when put together in a sentence. Also, the

computer language Python has a set of predefined words that are called Keywords. You can't

Data Science using Python 3.12 Introduction to Python

use these words anywhere else in Python because they have special meanings. Keywords set

the rules for how the code is written. That word can't be used as a variable, function, or

symbol name. The only words in Python that are written in capital letters are True and False.

Python 3.11 has 35 keywords and are’shown in Figure 3.11.

Fig 3.11. Python Kewords

3.6.3 Python Data Types

The variable sets aside a stored in memory to store a value, and when it is given a value, that

value is stored in that stored. Now, what kind of data that variable is linked to determines

how much memory it takes up. In other words, the data types tell you how much memory you

need to store the value. The data types in python is shown in Table 3.2.

Table 3.2. Python Data Types

Data Type Category Description

Numbers int, float, complex numeric values

String Str sequence of characters

Segquence List,tuple sequence of items

Mapping Dict data in key-value pair

Set Set collection of unique items

Python has 5 standard data types:

1. Numbers

2. String

3. List

4. Tuple

5. Dictionary

6. Set

Centre for Distance Education 3.13 Acharya Nagarjuna University

 Python Numbers

Based on their names, these are the types of data that store numbers: integer, float, and

complex. It can be either an int or a long int.

There are three numbers in Python:

Example:

 A = 20 # Assing 20 to A

 B = 4.67 # Assign 4.67 to B

 print(A) # prints 20 on screen

 print(B) # prints 4.65 on screen

Output:

 20

 4.65

Python Strings

Strings in Python are groups of characters that are kept in memory together, like an array of

characters. Either a single quote or two double quotes are used to show these characters.

Example:

 S = ― Happy “ #prints Happy to console

 print S[1] # prints first character to console

 print S + ― Morning ― # concatenates Morning to Happy and prints on console

Output:

Happy

H

Happy Morning

Data Science using Python 3.14 Introduction to Python

 Python List

In Python, a list is a sorted list of things separated by commas (,) and enclosed in square

brackets ([]). If you access a Python list using the slicing operator [], you can change the

value of any item in it. A list in Python is like a collection. The main difference is that an

array is a collection of items that are all of the same type, while a list is a collection of items

that can be of different kinds. The Python list can be changed.

Example:

Output:

The code above shows that Person_List has items that are numbers, floats, strings, and long

ints. The result shows that the whole Person_List was shown first. Python Tuple

Python tuples are the same as Python lists. The only difference is that Python tuples are

immutable, which means that you can access the things in them but not change their values.

Centre for Distance Education 3.15 Acharya Nagarjuna University

Besides being able to change, another big difference between tuples and lists is that lists are

defined inside square braces [], while tuples are defined inside parentheses ().

Example:

Output:

The code above shows that the items in Person_Tuple are integers, floats, strings, long

integers, and strings. The result shows the full Person_Tuple as the first item. After that The

first and fourth items were printed.

But at the end of the last line, an error is made because the fourth member of the tuple is

being changed. Based on the finding, we can say that tuple items can't be changed, but List

data types can.

Python Dictionary

A sorted list of key-value pairs is called a dictionary in Python. The dictionary's entries are

key-value pairs separated by commas. The value can always be retrieved if we know the key,

but the opposite is not true. Python dictionaries are therefore designed for data retrieval.

Python dictionaries are defined inside curly braces ({}), and the slicing operator ([]) is used

to access and assign values.

Data Science using Python 3.16 Introduction to Python

Example:

Output:

We have created a dictionary called week in the example above. In this case, the keys are

Monday, Tuesday, Wednesday, and Thursday, and the values are Monday, Tuesday,

Wednesday, and Thursday. To get the appropriate value, we employ keys. not the other way

around, though. Here, we've used the week dictionary's keys to obtain the data.

Capital_city['Thursday'] retrieves its corresponding value, Thu, since 'Thursday' is the key.

But since 'Thu' is the value assigned to the 'Thursday' key, capital_city['Thu'] raises an error.

 Python Set Data Type:

A set is an arbitrary grouping of distinct objects. Values inside braces {} and separated by

commas define a set.

Centre for Distance Education 3.17 Acharya Nagarjuna University

Example:

 Output:

Here, four integer values have been added to a set called student_id. As sets are collections

that are not ordered, indexing is meaningless. The entire set is shown first. Afterwards, trying

to access the element of the set using the slicing operator [] does not work. Similar to the

output accessing the third item with the error message generated by the index.

 Python Boolean Data Type:

The datatype which returns only 2 values either TURE or FALSE.

Example:

 A = 50 ;

Output:

 >>> A = = 40

 >>> FALSE

Data Science using Python 3.18 Introduction to Python

3.6.3 Python Operators

Operators are unique symbols or keywords in Python that perform operations on values and

variables. They form the foundation of expressions, which are used to work with data and

carry out calculations. Python has a number of operators, each having a distinct function. The

Python programming language supports the following types of operators:

1. Arithmetic Operators

2. Comparison (Relational) Operators

3. Assignment Operators

4. Logical Operators

5. Bitwise Operators

6. Membership Operators

 Python Arithmetic Operators

Common mathematical operations in addition modules are addition, subtraction,

multiplication, and division; additional arithmetic operations include exponential and floor

divisions are shown in Table 3.3. Expressions, variables, and integers are supported by all.

Table 3.3. Arithmetic Operations in Python

Operator Description Python Expression

+ Addition x + y

- Subtraction x - y

* Multiplication x * y

/ Division x / y

% Modulus x % y

** Exponent x ** y

// Floor Division x // y

Centre for Distance Education 3.19 Acharya Nagarjuna University

Example:

Output:

Once the two variables "x" and "y" are defined, this code does a number of mathematical

operations, including floor division, modulus, addition, subtraction, multiplication, and

division, and reports the results.

 Python Comparison Operators

Python comparison operators are required in order to compare two values.They produce a

Boolean value (True or False) based on the comparison. The comparison operators in python

is shown in Table 3.4.

Data Science using Python 3.20 Introduction to Python

Table 3.4. Comparison Operations in Python

Operator Description Python Expression

= = Equal x == y

! = Not Equal x != y

> Greater Than x > y

< Less Than x < y

> = Greater Than or Equal x >= y

< = Less Than or Equal x <= y

Example:

Output:

Centre for Distance Education 3.21 Acharya Nagarjuna University

 Python Assignment Operators

To assign values to Python, utilize the assignment operators. The simplest assignment

operator is the single equal symbol (=). The variable on the operator's left side is given the

value on the operator's right side. The different approaches to use assignment operator in

python is shown in Table 3.5.

Table 3.5. Assignment Operations in Python

Operator Description Python Expression

= Equal x = y

x=x+5

x= 2 * x + 4 * 5 + 8

Example:

Output:

Data Science using Python 3.22 Introduction to Python

Above displays the assignment operators in Python. First, 'x' and 'y' have values of 20 and 10,

respectively. Afterwards, x=25 is the output of applying expression x+5 to x.

Python Bitwise Operators

Bitwise operators in Python carry out actions on discrete binary integer bits.They operate on

each bit location logically while working with integer binary representations.Many bitwise

operations, including AND (&), OR (|), NOT (), XOR (), left shift (), and right shift (>>), are

included in Python.

 Python Logical Operators

Boolean expressions are composed, and their truth values are evaluated using logical

operators in Python. They are necessary for controlling the program's execution flow and for

creating conditional statements. The three fundamental logical operators in Python are AND,

OR, and NOT.

 Python Membership Operators

To determine whether a particular value appears in a series or not, one can utilize Python

membership operators. They simplify the process of figuring out which elements belong in

many types of data structures, including sets, tuples, lists, and strings. The is and is not

operators are the two main membership operators in Python.

3.7 INDENTATION IN PYTHON

One of the main features of Python syntax is indentation, which describes the spaces or tabs

at the start of a line. It is notable not only as a custom but also as a necessity. In Python,

indentation is not just a matter of style; it is essential to the way the code flows.

3.7.1 Types of Indentation

• Space: The recommended indentation approach in Python is using spaces. The official

Python style guide (PEP 8) recommends using four spaces for each indentation level, which

is typical practice.

• Tab: Although tabs are technically acceptable for indentation, their use isn't as widespread.

The primary problem is uneven code presentation caused by sharing or viewing code in

multiple editors. Therefore, especially in collaborative situations, employing tabs can

unintentionally result in an indentation issue in Python.

Centre for Distance Education 3.23 Acharya Nagarjuna University

Example:

Output:

The even odd test for the number in python with indentation is shown in above example and

output also shown respectively.

3.7.2. Common Indentation Errors

The common errors shown below:

Inconsistent Indentation: Make sure that the indentation level is the same for every line inside

a block. Convert tabs to spaces if you mix them with spaces.

Mismatched Indentation: Look for invisible characters like trailing spaces or tabs at line

beginnings if you notice a warning stating "indentation error" but no other evident problems.

Missing Colon: Python will raise an indentation error if you omit to include a colon (:) after a

statement that should initiate an indented block (for example, after if, for, while, or a function

definition).

Data Science using Python 3.24 Introduction to Python

3.8 SUMMARY

Conditional statements, which include if, else, and elif statements, are essential programming

structures that enable you to control the execution of your program based on the conditions

that you define. They make it possible for your program to make decisions and then execute

different codes based on those decisions after they have been made. In this chapter, we have

seen various examples of how to utilize these statements in Python. Some of the examples

include student performance test, number test etc.

3.9 TECHNICAL TERMS

Python, History, Indentation, Variable, Operators, Data types, Arithmetic, Membership,

comparison, space, and tab

3.10 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Illustrate about various data types in Python.

2. Describe about operators in python.

3. Explain about indentation in python.

Short Notes:

1. Write about features of python.

2. Discuss about how to run python script.

3. Write about membership operator with example.

3.11 SUGGESTED READINGS

1. Steven cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. Think Python: How to Think like a Computer Scientist

4. Brown, A.- Mastering Python Modules. Publisher.

Mr. G. V. SURESH

LESSON- 4

PYTHON CONDITIONAL STATEMENTS

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the concept of looping and statements in

Python programming. The chapter began with an understanding of basic types of loop and

statements in python, discuss each one detail and so on. After completing this chapter, the

student will understand how to work with loop and control statements in python in terms

programs.

STRUCTURE

4.1 Introduction

4.2 Python Conditional Statements

 4.2.1 Advantages and Disadvantages of Python Conditional Statements

 4.2.2 Application of Python Conditional Statements

4.3 Types of Conditional Statement

 4.3.1 if Statements

 4.3.2 if-else Statements

 4.3.3 elif statements

 4.3.4 Nested if-else statements

4.4 Summary

4.5 Technical Terms

4.6 Self-Assessment Questions

4.7 Suggested Readings

4.1. INTRODUCTION

Every day, we analyze our current situation and make decisions. Then, we act further depending

on those decisions. Therefore, every action we take in a given day depends on the choices we

make. The decision process is the most important component of almost all programming

languages. As the name suggests, decision-making enables us to execute a particular piece of

code to reach a particular conclusion. Condition verification is the cornerstone of decision-

making. Conditional statements are used in Python to make decisions. This chapter will cover the

use of if, else, and elif statements in Python and provide some real-world examples of their

application.

Data Science using Python 4.2 Python Conditional Statements

4.2 PYTHON CONDITIONAL STATEMENTS

 Conditional statements are an essential part of programming in Python. They allow you to make

decisions based on the values of variables or the result of comparisons. The uses of control

statement in python listed below:

 A conditional statement checks to see if a specific condition exists before executing

code.

 Conditional statements can help increase the performance of your code by giving you

control over the flow of your code, such as when and how it is run.

 This can be quite useful for determining whether a specific condition occurs before

the code begins to execute, as you may want to execute specific code lines only when

criteria are satisfied.

 Conditional statements, for example, can be used to verify the existence of a specific

variable or file before executing code, or to execute more code if certain criteria are

met, such as a calculation yielding a specified result.

4.2.1 Advantages and Disadvantages of Python Conditional Statements

Advantages of Python Conditional Statements

 It offers flexibility in program flow by enabling conditional code execution depending

on a certain condition.

 Its ability to handle numerous circumstances using else-if statements gives it another

benefit and permits more intricate decision-making.

 increases the readability of the code when handling several situations.

Disadvantages of Python Conditional Statements

 Complex and layered if-else statements can make the code more difficult to read and

update.

 Furthermore, if the same logic needs to be repeated several times, using if-else

expressions may result in code duplication.

 If-else statements also have the drawback of being prone to mistakes, like forgetting

to include an else statement or inadvertently employing the incorrect condition.

4.2.1 Application of Python Conditional Statements

 Showing an error message if the user input is invalid.

 Program flow control is the process of directing the execution of a program based on

variables.

 Applying logic to menu selection.

 Categorizing data based on several criteria.

 Processing the selections made by users within a menu?

 Implementing state machines

Centre for Distance Education 4.3 Acharya Nagarjuna University

4.3 TYPES OF CONDITIONAL STATEMENT

As is the case with other programming languages, Python has four distinct types of

conditional statements, which are provided in the following order:

 if Statements

 if-Else Statements

 elif Statements

 Nested If-Else Statements

4.3.1 If Statements

The if statement in Python is one of the conditional statements that is used the most

frequently in programming languages. In this way, it determines whether or not particular

statements are required to be executed. It performs a check to determine whether a particular

condition is satisfied; if the condition is satisfied, the set of code included within the "if"

block will be run; otherwise, it will not be executed.

Syntax:

if (EXPRESSION = = TRUE) :

 if- Block of code

Next statement after Block of code is executed.

In the syntax presented above,

 if the expression "EXPRESSION = = TRUE" is successfully executed, then the

conditional block of code will be run

 Otherwise, the statement that comes after the conditional block of code will be

executed.

The flow chart of if statement is shown in Figure 4.1.

 Fig 4.1. Flow Chart of if Statement

Data Science using Python 4.4 Python Conditional Statements

 If you look at the flowchart that was just presented, you will notice that the controller

will first arrive at an if condition and then evaluate the condition.

 If the condition is true, then the statements will be executed.

 if it is not true, then the code that is present outside the block will be executed.

Example: 1

Output:

The above code tests the condition "x<20." If the test is successful, a block of code will be

executed, as really seen in the output, and finally the last line, "This statement will always

be executed," will be executed. This statement is also clearly displayed in the output.

Example 2:

Centre for Distance Education 4.5 Acharya Nagarjuna University

Output:

The code condition (Obtained_Mark > = Pass_Mark) is tested in the previous example; if it

passes, the if-block will be executed. The code is executed twice. The first time, the

condition is not met (20 < 40), and the final message, "End of the Program," is shown.

Nevertheless, the second attempt met the success requirement (i.e., 60 > 40), printed

"Congratulations on Passing the Exam," and showed the final message, "End of the

Program."

4.3.2. if-else statements

The Boolean expression is evaluated by the if-else statement. The code in the "if" block will

be executed if the condition is TRUE; otherwise, the code in the "else" block will be

executed.

Syntax:

 If (EXPRESSION == TRUE):

 If-Statement (Body of the block)

 else:

 else-Statement (Body of the block)

When the syntax (EXPRESSION = = TRUE) in the following example is successfully

executed, a block of code will be executed if it is not, otherwise it will be executed.

Data Science using Python 4.6 Python Conditional Statements

The flow chart of if-else statement is shown in Figure 4.2.

Fig 4.2. Flow Chart of if-else Statement

According to the flow chart above, the controller will first reach the if condition and

determine if the condition is true. If it is, the statements in the if block will then be run; if not,

the "else" block will be executed, and finally the remaining code that is included outside the

"if-else" block will be executed.

Example: 1

The condition (x<20) is tested twice in the code above. The first time it is run, if it is

successful, a block of code will be executed, as we can see in the output. Finally, the final

Centre for Distance Education 4.7 Acharya Nagarjuna University

statement, "This statement will always be executed," is executed, and this is also clearly

displayed in the output. Nevertheless, the second run condition failed by evaluating x=30,

executing the else-Block of code, and generating the output "X is greater than 20." The final

statement, "This statement will always be executed," is finally carried out and is likewise

displayed in the output.

Output:

Example2:

Output:

Data Science using Python 4.8 Python Conditional Statements

 The code condition (Obtained_Mark > = Pass_Mark) is tested in the previous example; if it

passes, the if-block will be executed. The code is executed twice. The first time, if the

condition is met (i.e., 50 > 40), the message "Congratulations You Passed Exam" is

displayed, and the final phrase, "End of the Program," is printed. Nevertheless, the second

time around, the condition failed (20 < 30), printing "Sorry, Better Luck Next Time" and

displaying the last sentence, "End of the Program."

4.3.3 elif statements

"elif" statements are an additional type of conditional statement in Python. The "elif"

statement checks for multiple conditions only in the event that the supplied condition is false.

The sole distinction between it and a "if-else" expression is that the condition will be checked

in "elif" rather than "else."

Syntax:

 if (EXPRESSION-1 = = TRUE):

 If-Statement (Body of the block)

 elif(EXPRESSION-2 = = TRUE):

 elif-Statement (Body of the block)

elif(EXPRESSION-3 = = TRUE):

 elif-Statement (Body of the block)

 else:

 else-Statement (Body of the block)

 In the above syntax (EXPRESSION-1 = = TRUE) is executed successfully then if-

Block of code will be executed

 otherwise (EXPRESSION-2 = = TRUE) is tested, if it is executed successfully

then elif- Block of code related EXPRESSION-2 will be executed

 otherwise (EXPRESSION-3 = = TRUE) is tested, if it is executed successfully

then elif- Block of code related EXPRESSION-3 will be executed otherwise else-

Block of code will be executed.

Centre for Distance Education 4.9 Acharya Nagarjuna University

The flow chart of else-if- lader statement is shown in Figure 4.3.

Fig 4.3. Flow Chart of else-if ladder Statement

Example:

In the code below, the condition (Obtained_Mark >= Dist_Mark) is tested; if it is successful,

the if-block of code is executed; otherwise, the following succeeding blocks are executed

based on the criteria; otherwise, the else statement and the end statement are executed. The

code is executed four times; the first time the condition is met (i.e., 50 > 40), the message

"Congratulations You Passed Exam" is displayed, and the last statement, "End of the

Program", is printed. However, the second time run condition (65 > 60) is successful and

prints "Congratulations You Passed Exam in First Class" before displaying the last line,

"End of the Program". Similarly, in the third run, the requirement (i.e., 80 > 70) is met, and

the message "Congratulations You Passed Exam in Distinction" is displayed, followed by

the final sentence "End of the Program". During the last run, if the condition (i.e., 30 < 40) is

Data Science using Python 4.10 Python Conditional Statements

not met, the else block is activated and the message "Sorry, Better Luck Next Time" is

written. The last statement displayed is "End of the Program".

Example:

Centre for Distance Education 4.11 Acharya Nagarjuna University

Output:

4.3.4 Nested if-else statements

Nested "if-else" statements indicate that one "if" or "if-else" statement is contained within

another if or if-else block. Python has this feature as well, which allows us to verify several

conditions in a single application.

Data Science using Python 4.12 Python Conditional Statements

Syntax:

 if (EXPRESSION-1 = = TRUE):

 if (EXPRESSION-2 = = TRUE):

 Inner-If-Statement (Body of the block)

 else:

 Inner-else-Statement (Body of the block)

 else:

 Outer-else-Statement (Body of the block)

The syntax used above obviously shows that the if block will include another if block, and so

on. If block can have 'n' number of if blocks within it.

 In the below flow chart, (EXPRESSION-1 = = TRUE) is executed successfully, then

(EXPRESSION-2 = = TRUE) is tested;

 if it is executed successfully, then if- Block of code related EXPRESSION-2 will be

executed;

 otherwise, Block of code related EXPRESSION-2 will be executed; otherwise, Block

of code related EXPRESSION-1 will be executed.

The Flow Chart of nested if Statement is shown in Figure 4.4.

Fig 4.5. Flow Chart for nested-if Statement

Centre for Distance Education 4.13 Acharya Nagarjuna University

Example: 1

In the code below, the condition (Obtained_Mark > = Pass_Mask) is tested. If it is successful,

the inner if-statement (Obtained_Mark > = First_Mask and Obtained_Mark < Dist_Mask) is

tested. If it is successful, the block-related inner condition is executed. Otherwise, the block-

related inner condition is executed. Otherwise, the else block from the outer condition is

executed. The ensuing blocks are run based on the circumstances; otherwise, the else

statement is executed, followed by the end statement.

Example:

The code is executed four times. The first time, the condition is successful (i.e., 80 > 40), and

the second time, the condition is likewise successful (i.e., 80 > 70), and the message

"Congratulations You Passed Exam in Distinction" is displayed, followed by the last

statement, "End of the Program". However, the condition is successful the second time

Data Science using Python 4.14 Python Conditional Statements

(65>40) and then tested (65>60) and printed "Congratulations You Passed Exam in First

Class" and displayed the last statement, "End of the Program". Similarly, in the third run, the

condition is successful (i.e., 50 > 40), and then tested (i.e., 50 > 40), which is successful and

prints "Congratulations You Passed Exam" and displays the last statement, "End of the

Program". If the condition is not met (i.e., 25 < 40), the else block is activated and the

message "Sorry, Better Luck Next Time" is written. The last statement displayed is "End of

the Program".

Output:

4.4 SUMMARY

Conditional statements, which include if, else, and elif statements, are essential programming

structures that enable you to control the execution of your program based on the conditions

that you define. They make it possible for your program to make decisions and then execute

different codes based on those decisions after they have been made . In this chapter, we have

Centre for Distance Education 4.15 Acharya Nagarjuna University

seen various examples of how to utilize these statements in Python. Some of the examples

include student performance test, number test and etc.

4.5 TECHNICAL TERMS

Conditional Statement, expression, if , elif , nested if, reusability, flexibility, state machine

4.6 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Illustrate the concept of elif statement in python.

2. Describe about if-else statements in python.

3. Differentiate among simple if and if-else statement.

 Short Notes:

 Write about nested if-statement with example.

1. Discuss about advantages and disadvantage of conditional statements.

2. Write a python program to find biggest among three numbers.

4.7 SUGGESTED READINGS

1. Steven cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. "Think Python: How to Think Like a Computer Scientist" by Allen Downey

4. "Python Cookbook" by David Beazley and Brian K. Jones

5. "Programming Python" by Mark Lutz

 MR. G . V. SURESH

LESSON- 5

PYTHON LOOP & CONTROL STATEMENTS

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the concept of looping and statements in

Python programming. The chapter began with an understanding of basic types of loop and

statements in python, discuss each one detail and so on. After completing this chapter, the

student will understand how to work with loop and control statements in python in terms

programs.

STRUCTURE

5.1 Introduction

5.2 Python Loop and Control Statements

 5.2.1 Advantages and Disadvantages of Loop Statements

 5.2.2 Advantages and disadvantages of Control Statements

5.3 Types of Loop Statements

 5.3.1 For Loop Statements

 5.3.2 While Loop Statements

 5.3.3 Nested Loop Statements

5.4 Types of Control Statements

 5.4.1 Break Statement

 5.4.2 Continue Statement

 5.4.3 Pass Statement

5.5 Summary

5.6 Technical Terms

5.7 Self-Assessment Questions

5.8 Suggested Readings

5.1. INTRODUCTION

All programs, regardless of their programming language, automatically follow a sequential

flow. In a function, the first statement is run first, then the second, and so on. A scenario can

arise when the programmer needs to run a code block multiple time. To achieve this,

programming languages offer a variety of loop types that can repeatedly execute a specific

code. In this chapter, we will discuss Python looping statements.

As you may know, Python uses loops to repeatedly iterate over a section of code. But after a

certain circumstance is satisfied, you can desire to change the direction of control. This is

Data Science using Python 5.2 Python Loop & Control Statements

where Python's control statements are useful. Python control statements, their various forms,

and their applications will all be covered in this chapter.

5.2. PYTHON LOOP AND CONTROL STATEMENTS

It could be necessary to repeat a block of code more than once in some circumstances.

Programming languages offer a variety of loops to handle this issue, which enable a series of

instructions to be repeated until a predetermined condition is satisfied. We'll talk about the

many kinds of looping statements that Python offers here. The Python control statements that

regulate how Looping Statements flow. Control statements are an essential aspect of any

programming language, including Python.

Control statements in Python are used to manage the flow of execution of a program based on

certain conditions. Control statements in Python are a powerful tool for managing the flow of

execution. They allow developers to make decisions based on specific conditions and modify

the normal sequential flow of a program. By using control statements effectively, developers

can write more efficient and effective code.

5.2.1 Advantages and disadvantages of Loop Statements

Advantages of Loop Statements:

 Loops speed up software execution by repeating instructions. This is especially

significant when processing many database records or iterating over an array of

information. Loops speed up and use less computing power than writing down the

same instructions for each repetition.

 Without duplicating code, programmers can design a single piece of code that can be

executed several times using a loop. This simplifies program debugging and

modification by reducing code writing and maintenance. Loops make it easier to vary

the number of times a set of instructions is executed without modifying the code many

times.

 Loops increase programming flexibility. Loops let programmers develop adaptable

programs by repeating a set of instructions a certain number of times.

 Loops can do operations in multiple orders or under varied situations, giving them a

great tool for developing algorithms that can handle many scenarios.

Disadvantages of Control Statements:

 If you have a look at the examples of processing collections using loops that are

provided below, you will notice that the majority of the methods have logic that is

very similar to cycle through the elements.

 Coding that is not related to business logic takes up more of our time.

Centre for Distance Education 5.3 Acharya Nagarjuna University

 It leads to an excessive amount of code, which might become a problem when it

comes to maintenance.

5.2.2 Advantages and disadvantages of Control Statements

Advantages of Control Statements:

 The software engineer can indicate the conditions under which parts of code should

be run using control explanations.

 It is possible to use control explanations to construct intricate decision-making

systems within a program.

 Mistake handling and other exception-handling tasks are among the tasks that can be

accomplished with their assistance.

 The usage of control statements allows for the formation of uniform structures inside

a program, which makes it easier to read and understand the program.

 The formation of settled structures, which may then be utilized to construct more

sophisticated decision-making structures, can be accomplished through the utilization

of control articulations.

Disadvantages of Control Statements:

 If misused, control statements can complicate and make code difficult to find.

 Control statements, especially if misused, can make code difficult to understand.

 In excess or wrong use, control statements can slow program execution. For large or

time-sensitive programs, this may slow program execution.

5.3. TYPES OF LOOP STATEMENTS

As is the case with other programming languages, Python has three distinct types of looping

statements, which are provided in the following order:

 For Loop Statement

 While Loop Statements

 Nested Loop Statement

5.3.1 For Loop Statement

It is possible to iterate over a series of elements in Python by using the for loop, which is one

of the looping instructions contained inside the language. There are a variety of objects that

can be iterated, including a list, a tuple, a text, and any other object.

Syntax:

 for variable in sequence:

 # Code block to be executed

The preceding syntax,

Data Science using Python 5.4 Python Loop & Control Statements

 variable is a temporary variable that stores the value of each element in the sequence

during each iteration of the loop

 The code block that comes after the for statement is carried out many times for each

individual element that is included in the sequence.

Example:

 for i in 10:

 # Code block to be executed

Total 10 time block will be repeated

The flowchart to represent for loop statement in python is shown in Figure 5.2

Fig 5.2. Flowchart of For-loop Statement

Example :

Centre for Distance Education 5.5 Acharya Nagarjuna University

The code that you see above has a for loop that prints each element of the 'list' list on a new

line after iterating over each entry in the list. The output is shown on the next page.

Output:

Example 2:

Output:

Data Science using Python 5.6 Python Loop & Control Statements

Using the code that was just presented, the for loop will iterate over each element in the tuple

that is referred to as 'num' and then display it on a new line. In addition, the sum of each

number was computed, the result was saved in the "sum_nums" variable, and the sum value

was eventually printed out. In the run tuple, a sequence of distinct integers (5,8,7,2) is used,

and the result is "the sum of the numbers is 22"

According to Python, a range object is a sequence of numbers that cannot be changed. When

using a for loop, it is helpful to keep track of the number of times a block is repeated.

You can use the range() method in the following ways:

range ([start], stop, [step])

Every one of the three arguments must be an integer. The value of the [start] parameter is

always set to zero, unless an alternative number is provided. The only parameter that is

required for the function described above is stop. It is one less than the stop parameter that

the last integer in the series is. In the intervals between, the [step] value, which is set to 1 by

default, is used to increment the numbers.

Example:

The range() method was used instead of a for loop statement in the Python code above. Three

for loop statements in all, each printing a distinct range of numbers according on the inputs

passed to the range () function.

When the first "10" value was entered into range (10) it produced numbers starting at 0 and

ending with 10-1, or 9. A for-loop statement is then given range(1,5), and values are printed

starting at 1 and ending at end 5-1, or 4. Lastly, range(10,50,5) is sent to the for-loop

expression, which outputs values starting at 10 and ending at 50-4, or 45, because step=5.

Centre for Distance Education 5.7 Acharya Nagarjuna University

Output:

5.3.2 While Loop Statement

Another Python looping expression used to repeat a block of code until a predetermined

condition is met is the while loop.

Syntax:

The syntax of the while loop in Python is given below.

while condition:

 # Code block to be executed

A boolean expression called condition in this syntax is evaluated at the beginning of each

loop iteration. The while statement is followed by a code block that is periodically run until

the condition evaluates to False.

The flowchart to represent while loop statement in python is shown in Figure 5.3

Data Science using Python 5.8 Python Loop & Control Statements

Fig 5.3. Flowchart of While-loop Statement

Example:

Output:

Centre for Distance Education 5.9 Acharya Nagarjuna University

The code block is repeated here by the while loop until the sum variable is less than 5. As we

can see in the output, the sum variable is increased by 1 at each iteration, and the current

value of the sum is printed on a new line.

5.3.3 Nested Loop Statement

A loop inside another loop is known as a nested loop in Python. When we wish to loop over a

series of components with several degrees of nesting, we utilize it.

Syntax:

for variable in sequence:

 for i_variable in i_sequence:

 # Code block to be executed

Variable, as used in this syntax, is a temporary variable that, for each iteration of the outer

loop, stores the value of each element in the sequence. Every time the inner loop iterates, the

value of every element in the i_sequence is stored in the i_variable, a temporary variable.

Every element in the inner sequence and every element in the outer sequence is subjected to

several executions of the code block that follows the inner for statement.

Example :

The code given below uses the Nested Loop.

Data Science using Python 5.10 Python Loop & Control Statements

Output:

In this example, the nested loop performs an iteration over each item in the ‘matrix' list and

then prints the elements on a new line.

When one while loop is contained within another while loop, the resulting structure is

referred to as a nested while loop. We require nested loops in most of our apps.

Example:

Centre for Distance Education 5.11 Acharya Nagarjuna University

Output:

In this example, the nested loop performs an iteration over each item in the ‘matrix' list and

then prints the elements on a new line.

5.4 TYPES OF CONTROL STATEMENTS

Python, in addition to loop statements, has three different sorts of control statements, which

are given below. These control statements are used to govern the flow of execution.

 Break Statement

 Continue Statement

 Pass Statement

5.4.1 Break Statement

A premature termination of the loop in Python can be accomplished with the help of the

break statement. It is utilized in situations in which we wish to exit the loop prior to it having

finished all of its iterations.

Data Science using Python 5.12 Python Loop & Control Statements

Syntax:

The syntax of the break statement in Python is as follows:

for variable in sequence:

 if condition:

 break

 The value of each element in the sequence is stored in the variable, which is a

temporary variable, and it is used for each iteration of the loop to save the value.

 The condition is a statement that receives a boolean value and is evaluated at the

beginning of each iteration of the loop. If the condition is found to be true, the break

statement is carried out, therefore bringing an end to the loop.

Example:

The code that you see above has a for loop that outputs each item in the "fruits" list on a new

line after iterating over each item in the list. On the other hand, the break statement is

executed, and the loop is halted when the value of the "fruit" variable is equal to "banana."

Output:

Centre for Distance Education 5.13 Acharya Nagarjuna University

5.4.2 Continue Statement

Using the continue statement in Python, one can skip the iteration of the loop that is currently

being executed. It is utilized in situations in which we wish to skip a certain component of the

sequence and proceed with the subsequent iteration of the loop onward.

Syntax:

for variable in sequence:

 if condition:

 continue

 # Code block to be executed

 The value of each element in the sequence is stored in the variable, which is a

temporary variable, and it is used for each iteration of the loop to save the value.

 The condition is a statement that receives a boolean value and is evaluated at the

beginning of each iteration of the loop.

Example

Data Science using Python 5.14 Python Loop & Control Statements

Output:

The for loop iterates through each item in the "fruits" list in this example, printing each one

on a new line. Nevertheless, the loop's current iteration is skipped and the continue statement

is executed when the value of the "fruit" variable equals "banana."

5.4.3 Pass Statement

The pass statement is used as a placeholder in Python. It is used when we want to write

empty code blocks and want to come back and fill them in later. The syntax of the pass

statement in Python is given below.

Syntax:

for variable in sequence:

 pass

 Every time the loop iterates, the variable—which is a temporary variable—holds the

value of every element in the sequence.

 An empty code block is created using the pass statement and is subsequently filled in.

Centre for Distance Education 5.15 Acharya Nagarjuna University

Example:

In this example, the pass statement is used to create an empty code block while the for loop

iterates over each element in the "fruits" list.

5.5 SUMMARY

Looping statements are an important component of Python because they allow the

programmer to repeat a sequence of instructions until a specified condition is met, which

simplifies difficult issues and avoids repetitive code. In Python, looping statements are

classified into three types: for loops, while loops, and nested loops, each with their own set of

features and applications. We reviewed all these looping statements in Python.

When nothing in a conditional loop's body affects its conditional statement, the loop has the

potential to become infinite. The two most common types of conditional loops are While and

For loops. You can also specify a range (sequence) of numbers to control how frequently the

code executes.

Data Science using Python 5.16 Python Loop & Control Statements

5.6 TECHNICAL TERMS

Loop Statement, Control Statement, For, While, Nested loop, break, continue, pass,

reusability, and redundancy

5.7 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Illustrate the concept of Loop statement in python.

2. Describe about control statements in python.

3. Differentiate among break and continue statement.

 Short Notes:

1. Write about nested loop with example.

2. Discuss about advantages and disadvantage of loop statements.

5.8 SUGGESTED READINGS

1. Steven cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. "Python Crash Course" by Eric Matthes

4. "Automate the Boring Stuff with Python" by Al Sweigart

5. "Learning Python" by Mark Lutz

Dr. KAMPA LAVANYA

LESSON- 6

 PYTHON STRING

AIMS AND OBJECTIVES

The primary goal of this chapter is to grasp the concept of string in Python programming. The

chapter began with an understanding of basic definition of string, creating a string, and so on.

After completing this chapter, the student will understand how to work with string in python

in terms various methods, operations, and functions.

STRUCTURE

6.1 Introduction

6.2 Python String

 6.2.1 Creating a Python String

 6.2.2 Applications of Python Sting

6.3 Accessing the String

 6.3.1 Indexing

 6.3.2 Negative Indexing

 6.3.3 Slicing

6.4 Python List Operations

 6.4.1 Concatenation Operator

 6.4.2 Repetition Operator

 6.4.3 Membership Operator

 6.4.4 Comparison Operator

6.5 Python String Methods

 6.5.1 len()

 6.5.2 upper()

 6.5.3 replace()

 6.5.4 find()

6.6 Summary

6.7 Technical Terms

6.8 Self-Assessment Questions

6.9 Suggested Readings

6.1. INTRODUCTION

Python strings, like those in many other well-known programming languages, are arrays of

bytes that represent unicode characters. Nevertheless, a single character in Python is just a

string with a length of 1. Python does not have a character data type. You can access the string's

constituents by using square brackets.

Data Science using Python 6.2 Python String

Since it is an immutable data type, you are unable to alter a string after you have created it.

Strings are extensively utilized in a wide range of applications, including the storing and

manipulation of text data as well as the representation of names, addresses, and other text-

representable data types. This chapter will cover Python strings, one of the core data types in

Python programming, and will cover Python string methods, operators and functions,

working with them, and more.

6.2. PYTHON STRING

A string is a sequence of alphabets, words, or other characters. It is one of the most basic data

structures, serving as the foundation for data manipulation. Python includes a built-in string

class called str. Python strings are "immutable," which implies they cannot be modified once

formed.

6.2.1. Creating a Python String

To create a String in python there are three different types of approaches:

 With a Single quotes

 ‘Welcome to the world of "Python" keep Loving.'

 With a Double quotes.

 “Welcome to the world of ' Python ' keep Loving."

 With a Triple quotes,

 """ Welcome to the world of Python """, '''Keep Loving.'''

Example:

Centre for Distance Education 6.3 Acharya Nagarjuna University

Output:

The above example, where three strings are created namely S1,S2 and S3 in different styles

with same content. Finally displayed the three strings output is shown above.

6.2.2. Applications of Python Sting

 Use of string matching algorithms to quickly detect instances of plagiarism in both code

and text.

 Strings can be utilized for encoding and decoding purposes, ensuring the secure

movement of data from source to destination.

 We are able to offer better filters for the approximate suffix-prefix overlap problem by

utilizing strings and the techniques associated with them.

 HTTP requests and responses, among other data exchanged over networks, are encoded

and decoded using strings.

 When working with files, you'll need to know that strings are the go-to for reading and

writing file names and locations.

 Applications like sentiment analysis and natural language processing make use of strings

to glean useful insights from massive text datasets.

6.3 ACCESSING THE STRING

There are three various methods that we can get the characters from the individual String that

was already constructed in the previous section. The information is given below:

 Indexing

 Negative Indexing

 Slicing

Data Science using Python 6.4 Python String

6.3.1 Indexing

Using index values and treating strings like a list is one method. In Python, the Indexing

function can be used to retrieve specific characters from a String. The idea of indexing

technique is shown in Figure 6.1.

Fig 6.1. Indexing technique to access String

Example:

Centre for Distance Education 6.5 Acharya Nagarjuna University

Output:

The above example illustrate the concept of indexing method, where one strings S1 is

created with the content of “GOOD MORNING” and then accessed character at index 1 and

5. Finally displayed the extracted characters output is shown above.

6.3.2 Negative Indexing

Python's string language permits negative indexing, just as that of a list. Negative address

references, such as -1 for the final character, -2 for the second last character, and so forth, can

access characters from the back of the String thanks to indexing. The idea of negative

indexing is shown in Figure 6.1.

Fig 6.2. Negetive Indexing technique to access String

Data Science using Python 6.6 Python String

Example:

Output:

The above example illustrate the concept of negative indexing method, where one strings S1

is created with the content of “GOOD MORNING” and then accessed character at index-6

and -12. Finally displayed the extracted characters output is shown above.

6.2.3. Slicing

The String Slicing function in Python can be used to retrieve a range of characters from the

String. To slice something in a string, use a slicing operator, such as a colon (:). When

utilizing this method, bear in mind that the character at the start index is included in the

string that is returned, but the character at the last index is not.

Centre for Distance Education 6.7 Acharya Nagarjuna University

Example:

Output:

The above example illustrate the concept of slicing method, where one strings S1 is created

with the content of “GOOD MORNING” and then accessed character with range of [3-7]

and [5-13] . Finally displayed the extracted sub string output is shown above.

6.4 PYTHON STRING OPERATIONS

Python's basic string operations include doing simple arithmetic operations, verifying the

character of an existing substring, repeating a string, and much more are shown in Table 6.1.

Data Science using Python 6.8 Python String

 Table 6.1. Python String Operations

Operation Python

Expression

Description

Concatenation

s1 + s2 "Concatenation operator" is the name given to this

operator, which is used to unite two or more stings

Repetition

s * n The repetition operator is the name given to this.

There will be several copies of the same string

created by it.

Membership

in The membership operator is the name given to this.

Whether or whether a certain character or sub string

is included in the string that was supplied is returned

by it.

not in It is also a membership operator and does the exact

reverse of in. It returns true if a particular string or

character is not present in the specified. It gives a

return value of true if the character or sub string is not

included in the string that was supplied. Otherwise

return false.

Comparison

s1 == s2 Returns True if string, s1 is the same as string, s2.

Otherwise False.

s1 != s2 Returns True if string, s1 is not the same as string, s2.

Otherwise False.

Centre for Distance Education 6.9 Acharya Nagarjuna University

6.4.1 Concatenation Operator

Concatenating or joining two or more strings is a common task while programming. To

connect or concatenate two strings in this sense, use the plus operator (+) and the idea is

shown in Figure 6.3. Python's concatenation operator only joins items of the same type, in

contrast to other languages like JavaScript where type coercion allows us to concatenate a

string and an integer.

 Fig 6.3. Concatenate of Two Lists with ‘+’ Operator

Example:

Data Science using Python 6.10 Python String

Output:

Strings are sequences that cannot be changed, as we previously stated. Concatenating the two

strings in the previous example doesn't change either string. Rather, the process generates a

new string called "S3" from the two strings "S1" and "S2." This operator is frequently used

by beginners to add spaces between strings. This space is a string as well, but it's empty this

time.

Example:

Centre for Distance Education 6.11 Acharya Nagarjuna University

Output:

6.4.2 Repetition Operator

The purpose of this operator is to return a string that has been repeated a predetermined

number of times. This string is included in the new string, and it is repeated the number of

times that was requested. This is accomplished by the utilization of the multiplication

operator (*). Take for example that we have a string S and an integer N. Doing S times N or

N times S will result in S being repeated N times. The idea is shown in Figure 6.4.

Fig 6.4. Repetition of Strings with ‘*’ Operator

Data Science using Python 6.12 Python String

Example:

Output:

Centre for Distance Education 6.13 Acharya Nagarjuna University

Notice the last two print functions in the preceding example. Both actually output empty

strings. The last but one step seems sense because it creates zero copies of the string, but the

last operation appears strange. However, multiplying a string by a negative number yields an

empty string.

6.4.3 Membership Operator

These operators are commonly used to determine whether or not an element or character

occurs in a specific string. The in function returns True if a character x exists in a given

string, and False otherwise. The not in function returns True if a character x does not appear

in a provided string, and False otherwise.

Example:

Data Science using Python 6.14 Python String

Output:

It is important to keep in mind that the membership operators are also capable of working

with substrings; that is, they can determine whether or not a substring is present in a string.

Example:

Centre for Distance Education 6.15 Acharya Nagarjuna University

Output:

 6.4.4 Comparison Operator

The purpose of these operators in Python is to verify the equivalence of two operands, which

in this case are two strings.

Example:

Their names also indicate that they are used for this purpose. However, because they return a

boolean, they are most utilized in conditional expressions to determine whether or not two

strings are identical. A True value is returned by the == operator when the two strings in

Data Science using Python 6.16 Python String

question are identical, whereas a False value is returned when the strings in question are not

identical.

Output

Example:

Centre for Distance Education 6.17 Acharya Nagarjuna University

Output:

As shown in the preceding examples, make a comparison between the first string, the second

string, and the third string. Along the same lines, second with fourth. != is the operator that

returns. True when the two strings are equal otherwise return false.

6.5. PYTHON STRING METHODS

Python comes with several built-in methods that can be used to execute operations and

manipulations while working with strings. Listed below are several string methods that are

frequently used:

6.5.1 len()

It is possible to utilize the `len()` function in order to determine the length of a string. A count

of the characters contained in the string is returned by it.

Example:

String_new = “Welcome to Python!”

length = len(String_new)

print(String_new)

 Output

 18

The total number of characters includes space returned by the len() function i.e. 13

6.5.2 upper()

The string that is returned by the upper() method is one in which all of the characters are

capitalized.

Data Science using Python 6.18 Python String

Example:

String_new = “Welcome to Python!”

String_new = String_new.upper()

print(String_new)

 Output :

 WELCOME TO PYTHON!

The upper() is called along with string object String_new.upper and it returns a string where

all characters are in upper case.

6.5.3 replace()

Using the replace() method, a phrase that is supplied is replaced with another term that is also

specified.

Example:

String_new = “Welcome to Python!”

String_new = String_new.replace(“Pyhton”, “PYTHON”)

print(String_new)

 Output:

 Welcome to PYTHON!

The reverse r() is called along with old and new string and it replaces an old string

“Python” with new string “ PYHON”

6.5.4. find()

Using the find() method, one can locate the initial instance of the value that has been

supplied. However, if the value cannot be located, this procedure will return -1. This method

is essentially identical to the index() method; the only difference is that the index() method

throws an exception if the value is not found. In addition, this method is almost identical to

the index() method.

Example:

String_new = “Welcome to Python!”

String_new = String_new.find(“Python”)

print(String_new)

Centre for Distance Education 6.19 Acharya Nagarjuna University

 Output:

 11

6.6 SUMMARY

Strings are an essential data type in Python, and they are utilized widely for activities that

involve working with textual data. In this chapter, we covered the fundamentals of creating

and manipulating strings, as well as accessing characters, string slicing, concatenation, string

length, and the different string methods that are available in Python. Your ability to work

effectively with strings in your Python programs and to handle text-based data in an efficient

manner will be directly correlated to your level of comprehension of these ideas.

6.7 TECHNICAL TERMS

String, Indexing, Negative Indexing, Concatenation, Membership, comparison and Slicing

6.8 SELF ASSESSMENT QUESTIONS

Essay questions:

1. How is a String created and called? Explain.

2. What are the various List Operations? Explain.

3. Explain about List Methods with example.

 Short Notes:

1. Write about indexing method for sting access.

2. Discuss about applications of python string.

3. Explain about Slicing method with example.

6.9 SUGGESTED READINGS

1. Steven cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. "Python Crash Course" by Eric Matthes

4. "Automate the Boring Stuff with Python" by Al Sweigart

5. "Learning Python" by Mark Lutz

Dr. KAMPA LAVANYA

LESSON- 7

 PYTHON LIST

AIMS AND OBJECTIVES

The primary goal of this chapter is to grasp the concept of lists in Python programming. The

talk began with an understanding of what a list is, its attributes, applications, and so on. After

completing this chapter, the student will understand what a list is and how it differs from

other data types. Also knows how to access List using various methods, operations, functions,

and methods.

STRUCTURE

7.1 Introduction

7.2 Python List

 7.2.1 Creating Python List

 7.2.2 Features of Python List

 7.2.3 Application of Python List

7.3 Accessing the List

 7.3.1 Indexing

 7.3.2 Negative Indexing

 7.3.3 Slicing

7.4 Python List Operations

 7.4.1 Concatenation Operator

 7.4.2 Repetition Operator

 7.4.3 Membership Operator

 7.4.4 Comparison Operator

7.5 Python List Functions

 7.5.1 len()

 7.5.2 min()

 7.5.3 max()

 7.5.4 sort()

 7.6 List Methods

 7.7 Summary

 7.8 Technical Terms

 7.9 Self-Assessment Questions

 7.10 Suggested Readings

Data Science using Python 7.2 Python List

7.1. INTRODUCTION

Python is a popular high-level, general-purpose programming language that excels at creating

graphical user interfaces and web applications. It is also a popular choice for application

development due to its dynamic type and binding features. In this chapter we'll learn about List,

an important data structure in Python programming.

Python Lists are a data structure that is quite like array of elements. The primary advantage of

List is mutable, which means they can be modified once generated. This allows modify the data

at any time. A List can contain any number of objects of various types, including strings,

integers, floats, lists, and so on. Let's look at how to generate and use a List in python.

7.2. PYTHON LIST

Lists written in Python are identical to dynamically scaled arrays defined in other languages,

such as Array List in Java and Vector in C++. Python lists are one of the most used and

versatile built-in types. They allow us to store multiple items in a single variable. In Python,

lists are usually stored in a type of object called a list. A list is a sequence of objects.

 A list is a collection of objects separated by commas and denoted by the symbol []. The

objects can be of any type: numbers, strings, even other lists. Lists are mutable, meaning you

can change their content by adding, removing, or modifying objects. This chapter was able to

give you a clear understanding about Python Lists.

7.2.1. Creating a List

When using Python, the process of creating a list is simple. To define a list, you must first

enclose a series of components within square brackets and then separate them with commas.

Syntax:

 >>> List_name = [‘item1’, ‘item2’,’item3’,,’itemN’]

The above syntax ‘N’ items are assigned to the List. The items either to be homogeneous or

heterogeneous. After creating of list, it can be modified later as per the requirement.

Example:

 >>> Subject_List = [‘physics’ , ‘chemistry’ , ‘math’]

 >>> Person_List = [‘Sai’, 18 , ‘CSE’ , ‘ANU’,78.89]

The above two list one homogeneous and other one is heterogeneous. The first list

Student_List consist of 3 items of type string. Next, string is Person_List is a heterogeneous

consist of 5 items of mixed combination of string, int and float.

7.2.2 Features of Python List

The list data type in Python possesses several key qualities, including the following:

Centre for Distance Education 7.3 Acharya Nagarjuna University

 It is important to note that lists are sorted, which means that the order in which the items

in the list are presented is maintained.

 Lists are changeable, which means that additions, deletions, and modifications can be

made to the elements that make up the list.

 Lists can store elements of a variety of data kinds, making them heterogeneous. It is

possible, for instance, to have a list that includes strings, floats, and integers.

 As a result of the fact that lists can be nested, it is possible to have one list contained

within another list.

 Lists can expand or contract dynamically through the addition or removal of elements.

Because of this, lists are extremely adaptable and diverse.

• Using indexing, elements included within a list can be retrieved. To obtain or edit the

value of an element, you can make use of the index of that element.

• Lists are iterable, which means that you can use a loop to carry out the process of iterating

over all of the items contained within the list.

• Lists come with several methods that are built in, which makes it simple to modify and

interact with them.

7.2.3 Application of Python List

Here's how the list data type is used in Python.

• Lists are a common way for Python programs to store and change data. This means that a

computer that reads data from a file can store that data in a list so that it can be used later.

• Lists can be used to make data structures like stacks and queues work, which are widely

used in computer science.

• Lists can be used to store and show data in GUI programs. A list widget can be used in a

GUI program to show, for example, a list of the things in a shopping cart.

• Web scraping tools like BeautifulSoup can be used to get data from web pages and store

and change it in lists.

• Lists are a common way for machine learning apps to store and change data. One way to

train a machine-learning model is to give it a list of features and a list of names.

7.3 ACCESSING THE LIST

There are three different ways to get to items or objects in the list that was made in the last

part. The following give the details:

 Indexing

 Negative Indexing

 Slicing

Data Science using Python 7.4 Python List

7.3.1 Indexing

In Python, the Indexing method can be used to obtain individual items from a list. The

index ranges from 0 to length-1. The first item is indexed at zero, the second at one, and so

on. The idea of this method is shown in Figure 7.1

Fig 7.1. Accessing List of items with Indexing Method

Example:

The above Python program build the first empty list, known as My_List, with zero items.

Later, I redefined My_List with three members of the same type, namely integers. Similar to

Centre for Distance Education 7.5 Acharya Nagarjuna University

string elements and heterogeneous items, the same list is redefined. In addition, the list is

retrieved using an indexing approach, as shown plainly in the code above.Output displays the

results, which include each list as well as the extracted elements at indexes 0 and 3.

Output:

7.3.2. Negative Indexing

In contrast to other programming languages, Python also allows you to access things with

negative indexes. Negative indices are numbered from right to left. The index -1 denotes

the final element on the List's right side, followed by the index -2 for the following member

on the left, and so on until the last element on the left is reached. The idea of this method is

shown in Figure 7.2.

Fig 7.2. Accessing List of items with Indexing Method

In the below example, generated pyton program created list My_List with six items. Later

displayed all items . After that each element is indiviualy extracted with negetive indexing

method and illustrated in the example. The output, displayed specific elements at index -1 , -4

and -6 respetively.

Data Science using Python 7.6 Python List

Example:

Output:

7.3.3 Slicing

In the last chapter, we saw how the Slicing function accesses a range of characters in the

String. The Slicing Operator can also be used to extract a set of items or a sublist within an

item denoted by a colon. List slicing generates a new list from an existing one.

Centre for Distance Education 7.7 Acharya Nagarjuna University

Syntax:

 list[start: stop: step]

where,

 “start" is an index position that indicates the point in a list from which the slicing will

begin.

 stop is the index position before which the slicing process will come to an end in a

list.

 In other words, the start index is modified after every n steps, and list slicing is

carried out on that index.

 step is the number of steps that have been taken.

The figure 7.3, shows the concept of slicing method in python , where the complete list is

devided into three slices and is shown in below:

Fig 7.3. The concept of Slicing in Python

Example:

Data Science using Python 7.8 Python List

 Output:

Within the preceding illustration, a pyton program was used to construct a list called

Std_List. This list contains six elements, all of which are of a heterogeneous nature, including

both string and integer data types.

 Later on, things that were shown using the slicing method. There is a slice that fits all of the

items presented [1:], and the following range of items in the list is displayed [0:3]. A slice of

[2:5] is used to display the elements of the list in a complementary manner.

7.4 PYTHON LIST OPERATIONS

Python's simple list operations are an excellent method to begin learning more complex

coding principles. It enables data manipulation and the creation of fundamental structures,

both of which are necessary for resolving programming difficulties.

Basic list operations in Python include repeating a list, checking that an element is already in

the list, and doing simple arithmetic on the numbers in the list.The complete list of operations

in python shown in Table 7.1.

Table 7.1. Python List Operations

Operation Python

Expression

Description

Concatenation L1 + L2 "Concatenation operator" is the name given to

this operator, which is used to unite two or

more lists of the same type or distinct types.

Repetition L1 * n The repetition operator is the name given to

this. There will be several copies of the same

list created by it.

Membership in The membership operator is the name given to

this. Whether or whether a certain item is

included in the list that was supplied is

returned by it.

Centre for Distance Education 7.9 Acharya Nagarjuna University

not in It is also a membership operator and does the

exact reverse of in. It returns true if a

particular item is not present in the specified It

also functions as a membership operator and

performs the exact opposite of the in

operation. It gives a return value of true if the

item in question is not included in the list that

was supplied.

Comparison

L1 == L2 Returns True if List, L1 is the same as List,

L2. Otherwise, False.

s1 != s2 Returns True if List, L1 is not the same as List,

L2. Otherwise, False.

Iteration for x in [1, 2,

3]: print x,

Iteration operator is the name given to this

operator, and it prints elements of List in an

iterative manner.

7.4.1 Concatenation Operator

When we are programming, we frequently find ourselves in situations where we need to join

or concatenate two or more lists. When it comes to this particular matter, the plus operator (+)

is utilized to join two or more lists that are of the same type or of different types.

Fig 7.4. Concatenate of Two Lists with ‘+’ Operator

The two strings are not altered in any way by the concatenation of the two lists, as seen in the

previous example. Instead, the operation generates a new List by combining the two Lists that

was previously known as "first" and "second."

Data Science using Python 7.10 Python List

Output:

Example:

Centre for Distance Education 7.11 Acharya Nagarjuna University

The resulting Pyton program that was used in the example before produced the first list,

which contained six elements of type integer. Created the second and third lists in the same

manner, each containing six entries of the integer type. Subsequently, the action of adding or

concatenating, denoted by the symbol +, was utilized in order to merge List1 and List2. A

similar process, namely the addition operation, was conducted between List3 and List2. The

outcome of the sample program is displayed in its entirety in the output.

7.4.2 Repetition Operator

This operator returns a repeating List a specified number of times. The new List includes the

same List the number of times specified. The multiplication operator (*) is employed in this

case. Suppose we have a List L and an integer N. Doing L * N means repeating L for N

times.

Fig 7.5. Repetition of Lists with ‘*’ Operator

In the preceding example, the produced python program built the first list of six integers.

Later, the repetition operation * was applied to List1 and repeated two or three times, with the

result displayed on the output screen.

Example:

Data Science using Python 7.12 Python List

Output:

7.4.3 Membership Operator

 These operators are often used to check if or if not an element or character exists in a

particular string. The in returns True if a character x exists in a given string

and False otherwise. The not in returns True if a character x does not exist in a given string

and False otherwise.

Example:

Centre for Distance Education 7.13 Acharya Nagarjuna University

In the above example, the created pyton program demonstrates both comparison and

membership functions. For this aim, I created the first and second lists of six integers. Later,

both actions used the result shown on the output screen.

Output:

7.4.4 Comparison Operator

These operators in python just like their name specifies, are used to test the equivalence of

two operands, in this case, 2 strings. Just because they return a boolean they are mostly used

in conditional statements to evaluate the sameness of two strings. The == operator

returns True when the two said strings are the same and False when the two said strings are

not the same.

Data Science using Python 7.14 Python List

7.5 PYTHON LIST FUNCTIONS

Functions that are used with lists are known as list functions, and they are global functions.

They return a value after receiving a list as an argument from the user. The following is a

selection of examples of list functions:

You can choose from the following list functions in Python:

 len() : is a function that returns the total number of items in the list.

 sorted (): A new sorted list of the elements that were in the original list is returned by the

function.

 The min (): function returns the element in the list that is the smallest.

 max (): function returns the item in the list that is the largest.

 sum (): This function returns the total value of all the items in the list.

7.5.1 len()

The number of items contained in a list can be displayed using the len() method. A list is

used as the input, and the number of entries is returned as the value of the value returned. As

shown in the following illustration, we will examine two lists that contain integers and create

output, with the lengths of List_1 and List_2 being 2 and 3, respectively.

Example:

List_1 = [6,2]

List_2 = [42.56, 32.45, 87.12]

len(List_1)

len(List_2)

Output:

2

3

7.55.2. min ()

In a given list, the min () function displays the element that is the least significant. When

given a list as input, it returns the minimum number of entries as the return value. In the next

illustration, we will examine two lists that contain numbers and produce output based on the

fact that the minimum number of entries in List_1 and List_2 are 2 and 32.45 respectively.

Example:

List_1 = [6,2]

List_2 = [42.56, 32.45, 87.12]

min(List_1)

min(List_2)

Centre for Distance Education 7.15 Acharya Nagarjuna University

Output:

2

32.45

7.5.3. max ()

In a given list, the max () function displays the highest and most significant member. When

given a list as input, it returns the maximum number of entries as the return value. In the next

illustration, we will examine two lists that include numbers and create output that is,

respectively, 6 and 87. The maximum number of items that can be found in List_1 and List_2

is twelve.

Example:

List_1 = [6,2]

List_2 = [42.56, 32.45, 87.12]

max(List_1)

max(List_2)

Output:

6

87.12

7.5.4. sort ()

The sort () function creates a sorted order of the elements in a list and displays them. It

accepts an unordered list as input and returns a sorted list as the value after processing the

input. In the following illustration, we will examine two lists that include numbers and

produce output like [2,6] and [32.45, 42.56, 87.12], which are the sorted versions of List_1

and List_2, respectively.

Example:

List_1 = [6,2]

List_2 = [42.56, 32.45, 87.12]

sort.List_1

sort.List_2

Output:

[2,6]

[32.45, 42.56, 87.12]

Data Science using Python 7.16 Python List

7.6 List Methods

The built-in methods in lists called Python List Methods are used to manipulate Python lists

and arrays. We've covered every technique you can use with Python lists below, including

insert (), copy (), append (), and more, as show in Table 7.2. The result illustrates how each

method is implemented in Python.

Table 7.2. Python List Methods

Method Description

append () Used for adding elements to the end of the List.

copy () It returns a shallow copy of a list

clear () This method is used for removing all items from the list.

count () These methods count the elements.

extend () Adds each element of an iterable to the end of the List

index () Returns the lowest index where the element appears.

insert () Inserts a given element at a given index in a list.

pop () Removes and returns the last value from the List or the given index

value.

remove () Removes a given object from the List.

reverse () Reverses objects of the List in place.

https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/
https://www.geeksforgeeks.org/python-list-clear-method/
https://www.geeksforgeeks.org/python-list-count-method/
https://www.geeksforgeeks.org/python-list-extend-method/
https://www.geeksforgeeks.org/python-list-index/
https://www.geeksforgeeks.org/python-list-insert/
https://www.geeksforgeeks.org/python-list-pop/
https://www.geeksforgeeks.org/python-list-remove/
https://www.geeksforgeeks.org/python-list-reverse/

Centre for Distance Education 7.17 Acharya Nagarjuna University

The generated Python program illustrates the operation of list methods in the example below.

To do this, lists with month collections were established. Afterwards, many procedures were

used, including pop (), copy (), reverse (), append (), and extend (). The output displays the

entire outcome.

Example:

7.7 SUMMARY

Python lists are a fundamental and extremely versatile data structure. They allow you to store

ordered groupings of elements that may be of different data kinds. Lists include a wide range

of built-in methods and operations for adding, removing, altering, sorting, searching, and

manipulating members. Lists are extremely useful for organizing and processing data in

Python since they are dynamic and mutable. Whether you are a beginner or an expert

programmer, learning lists is critical for releasing Python's full potential in disciplines such as

data research, web development, automation scripting, and more.

7.8 TECHNICAL TERMS

List, Indexing, Negative Indexing, Max, Min, Count, Index, and Slicing

Data Science using Python 7.18 Python List

7..9 SELF ASSESSMENT QUESTIONS

Essay questions:

1. How is a List created and called? Explain.

2. What are the various List methods? Explain.

3. Explain about List functions with example.

 Short Notes:

1. Write about indexing access method.

2. How List is different from the Tuple and Dictionary.

3. Explain about concatenation operation of List.

7.10 SUGGESTED READINGS

1. Steven cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. "Think Python: How to Think Like a Computer Scientist" by Allen Downey

4. "Python Cookbook" by David Beazley and Brian K. Jones

5. "Programming Python" by Mark Lutz

 Mrs. A. SARVANI

LESSON- 08

 PYTHON TUPLE

AIMS AND OBJECTIVES

The main aim of this chapter is understanding the concept of tuples in Python Programming.

The discussion related to understand what tuple and its characteristics is. After completion of

this chapter, student will be able to know what tuple is, how it is different from other data

types. Also able to know access tuples by various methods, operations, functions, and

methods in tuples.

STRUCTURE

8.1 Introduction

8.2 Python Tuple

 8.2.1 Creating Python Tuple

 8.2.2 Advantages of Tuple over List

8.3 Accessing Tuple

 8.3.1 Indexing

 8.3.2 Negative Indexing

 8.3.3 Slicing

8.4 Python Tuple Operations

 8.4.1 Concatenation of Tuples

 8.4.2 Tuple Membership

8.5 Python Tuple Functions

 8.5.1 len()

 8.5.2 max()

 8.5.3 min()

 8.5.4 sum()

 8.6 Tuple Methods

 8.6.1 Count() Method

 8.6.2 Index() Method

 8.7 Summary

 8.8 Technical Terms

8.9 Self-Assessment Questions

8.10 Suggested Readings

Data Science using Python 8.2 Python Tuple

8.1 INTRODUCTION

Python is a popular high-level, general-purpose programming language that excels at creating

graphical user interfaces and web applications. It is also a popular choice for application

development due to its dynamic type and binding features. In this chapter we'll learn about

tuples, an important data structure in Python programming.

Python tuples are a data structure that is quite like a list. The primary distinction between the

two is that tuples are immutable, which means they cannot be modified once generated. This

makes them excellent for storing non-modifiable data, such as database records. A tuple can

contain any number of objects of various types, including strings, integers, floats, lists, and so

on. Let's look at how to generate and use a tuple to make our programming work easier.

8.2 PYTHON TUPLE

A sequence of any items that are separated by commas and wrapped in parenthesis is referred

to as a tuple. We use tuples to represent fixed collections of elements since they are

immutable objects, which means they cannot be modified. Tuples are used to carry out this

function. Tuple items are placed in a specific order, cannot be altered, and permit duplicate

values. When we say that tuples are ordered, we are referring to the fact that the items in the

tuple have a predetermined order on which they will remain indefinitely. Tuples and Python

lists share some similarities in terms of indexing, nested objects, and repetition; nevertheless,

the most significant distinction between the two is that a Python tuple is immutable, whereas

a Python list is mutable. Tuples are used in Python programming languages. Since tuples are

indexed, the first item has an index of [0], the second item uses an index of [1], and so on.

8.2.1 Creating Python Tuples

It is possible to create a tuple by associated with all of the items (elements) in parentheses ()

rather than square brackets [], and by separating each element with commas. It is possible for a

tuple to include any number of objects of different types, including integers, floats, lists, strings,

and so on. In addition, you have the option of specifying nested tuples, which can include one or

more items that are either dictionaries, lists, or tuples.

The given example shows how to create simple Tuple in python:

Example:

 emp_tup = () # Empty Tuple

 int_tup = (2, 8, 1, 6, 15, 3) # A Tuple with integers

 mixed_tup = (12, "sai", 81.3) # A Tuple with mixed data items

 nested_tup = ("Python", [8,5,17,6], (2, 6, 1, 20)) # Nested Tuple

Centre for Distance Education 8.3 Acharya Nagarjuna University

We produced four different sorts of tuples in the example that was just presented: empty, int-type,

mixed type, and nested type. It is after the initialization of data items that the size of the empty

tuple is calculated. Nevertheless, the elements that are part of the int type and the mixed type are

the numbers 6 and 3. An example of a nested tuple is a special sort of tuple in which each element

also contains additional elements. A string, a list, and a tuple were the three elements that were

present in the nested tuple that was defined before.

8.2.2 Advantages of Tuple over List

Since they are so comparable, tuples and lists are applied in scenarios that are comparable.

On the other hand, there are a few benefits that come along with utilizing a tuple rather than a

list.

 In contrast to lists, the Tuples cannot be modified in any way. The addition, removal,

or replacement of a tuple is not possible.

 Tuples are often utilized for heterogeneous data kinds, which are distinct from one

another, whereas lists are typically utilized for homogeneous data types, which are

comparable to one another.

 As a result of the immutability of tuples, iterating through them is a more efficient

process than iterating through a list. As a consequence of this, there is a slight

improvement in performance.

 Dictionary keys can be derived from tuples that include elements that cannot be

changed. When it comes to lists, this is not possible.

 If you have data that does not change, implementing it as a tuple will ensure that it

continues to be protected from being written to.

 If you wish to make changes to the information contained in a tuple, we will first need

to transform it into a list.

8.3 ACCESSING TUPLE

A tuple's objects can be accessed in 3 different types of ways which includes:

 Indexing

 Negative Indexing

 Slicing

8.3.1 Indexing

Accessing an item within a tuple that has an index that begins at 0 can be accomplished using

the index operator []. A tuple that contains five items will have indices that range from 0 to 4,

inclusive. An index that is higher than four will be considered out of range.

Data Science using Python 8.4 Python Tuple

Example:

The four types of tuples that have previously been constructed in the example above—empty, int-

type, mixed type, and nested type—are accessed using an index. This operator is quite helpful in

accessing particular elements from the tuple. Different elements are accessible from different

types of tuples in the code above. Three elements from the integer tuple and two from the mixed

tuple, for instance. Similar access is made using the indexing method in nested tuples.

Output:

Centre for Distance Education 8.5 Acharya Nagarjuna University

8.3.2 Negative Indexing

Tuple, a type of sequence object in Python, also allows negative indexing. -1 addresses the

final item in the selection, -2 addresses the second-to-last item, and so on.

Example:

Two sorts of tuples, empty and int-type, are already constructed in the example above and are

accessed using a negative index. For instance, the -3 and -1 indexes are used to retrieve the

elements 3 and 2 of the integer and mixed tuples, respectively. In a similar vein, nested tuples can

also use this type of access.

Output:

8.3.3. Slicing

In Python, tuple slicing is a widely used technique that programmers use to solve real-world

problems. Examine a Python tuple. To access a range of a tuple's elements, slice it. One

method is to use the colon as a simple slicing operator (:).We can use the slicing operator

colon (:) to access different tuple components.

Data Science using Python 8.6 Python Tuple

Example:

Output:

8.4 PYTHON TUPLE OPERATIONS

Tuple is a sequence in Python. As a result, we can use the + operator to concatenate two

tuples and the "*" operator to concatenate many copies of a tuple. Tuple objects are used by

the membership operators "in" and "not in."

Centre for Distance Education 8.7 Acharya Nagarjuna University

Table 8.1 Python Tuple Operations

Python Expression Results Description

len((1, 2, 3)) 3 Length

(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) Concatenation

('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!', 'Hi!') Repetition

3 in (1, 2, 3) True Membership

for x in (1, 2, 3): print x, 1 2 3 Iteration

8.4.1 Concatenation of Tuples

The process of connecting two or more tuples is called concatenation. The operator "+" is

used for concatenation. Tuple concatenation is always performed starting at the end of the

original tuple. On tuples, other arithmetic operations are not applicable. Concatenation can

only be used to join datatypes that are the same, joining a list and a tuple result in an error.

The idea of tuple concatenation is shown in Figure 8.1.

Fig 8.1 Concatenation of Tuples in Python

Data Science using Python 8.8 Python Tuple

Example:

Two tuples of the types character and integer were constructed in the example above,

designated as tuple_1 and tuple_2. The outcome of later addition operations applied to two

tuples is reported. The result, which combines the contents of tuples 1 and 2 into a single

tuple, is displayed on screen.

Output:

8.4.2 Tuple Membership

The existence of an item in a tuple can be ascertained by using the in and not in keywords.

Centre for Distance Education 8.9 Acharya Nagarjuna University

Example:

Output:

Data Science using Python 8.10 Python Tuple

Applying membership procedures on the two produced tuples, tuple_1 and tuple_2, as

demonstrated in the preceding example. The results of these membership operations, such

as is and is not, are TRUE or FALSE. Verified whether the term "there" is available in the

case above. In a same manner, look up further words.

8.5 PYTHON TUPLE FUNCTIONS

Python offers a variety of functions for carrying out tasks. Functions such as cmp(), max(),

min(), and so forth are used to carry out particular tasks. Each function's explanation can be

found in Table 8.1.

Table 8.1 Python Tuple Functions

Function Description

cmp(tuple1, tuple2) Compares elements of both the tuples

len(tuple) Returns the total length of the tuple

max(tuple) Returns the largest element from the tuple

min(tuple) Returns the smallest element from the tuple

tuple(seq) Converts a list into tuple

8.5.1 len()

The number of elements in a tuple can be obtained using the len() method. It accepts a tuple

as an input and outputs an integer number that is the tuple's length.

Example:

Centre for Distance Education 8.11 Acharya Nagarjuna University

Output:

We have defined a tuple called my_tuple with five items in the example above. The length of

the tuple, which is 5, was then obtained using the len() method.

8.5.2 max ()

To get the maximum value in a tuple, use the max () function. It accepts a tuple as an input

and outputs the tuple's maximum value.

Example:

Data Science using Python 8.12 Python Tuple

Output:

We have defined a tuple called my_tuple with five items in the example above. The

maximum value in the tuple, which is 9, was then obtained using the max() method.

8.5.3 min ()

To get the lowest value in a tuple, use the min () function. It accepts a tuple as an input and

outputs the tuple's minimal value.

Example:

Centre for Distance Education 8.13 Acharya Nagarjuna University

Output:

We have defined two tuples tuple_1 and tuple_2 with six and five items in the example

above. Next, we obtained the tuple's minimal values Two, and 2 by using the min() function.

8.5.4 sum ()

The sum of each element in a tuple can be obtained using the sum () function. It accepts a

tuple as an input and outputs the total of each tuple's elements.

Example:

Output:

Data Science using Python 8.14 Python Tuple

We have defined a tuple called tuple_2 with five items in the example above. The total of all

the elements in the tuple, which is 36, was then obtained using the sum () method.

8.6 TUPLE METHODS

Python's tuple routines offer an extensive range of functionalities for working with tuples.

Programmers can find the length, maximum or minimum value, total of all items, and create

tuples from iterables using these functions. Easy finding and counting of particular elements

within tuples is also made possible by the index() and count() operations.

8.6.1 Count () Method

A built-in Python function called count () can be used to determine how many times a certain

element appears in a tuple. The value to be counted is the only input that the method accepts.

Example:

Output:

In the above example, we first create a tuple tuple_2 with some elements. Then we use the

count () method to count the number of occurrences of the value 2 in the tuple. The method

returns the count of 2 which is 3. Finally, we print the count.

Centre for Distance Education 8.15 Acharya Nagarjuna University

8.6.2. Index () Method

A built-in Python function called index () can be used to determine the index of a given

element's first instance in a tuple. The value to be searched in the tuple is the only input

required by the method.

Example:

Output:

In the preceding example, we first create a tuple, tuple_2, with certain elements. Then we use

the index () method to discover the index of the tuple's first occurrence of the value 2. The

method returns the index of the first occurrence of 2 (which is 1). Finally, we will print the

index.Tuples are widely used in Python for a variety of purposes, including returning

multiple values from a function, representing fixed groupings of data, and serving as keys in

dictionaries.

Data Science using Python 8.16 Python Tuple

The methods discussed above make it simple to interact with tuples in Python, allowing you

to extract and change their contents. The count () function in Python is useful for determining

the number of repetitions of a certain element in a tuple. The index () function in Python is

useful for determining the index of the first occurrence of a certain element in a tuple.

8.7 SUMMARY

Tuples enable integer-based indexing and duplicate elements, which improves data

organization and retrieval. They can be defined with or without parentheses; however,

without parentheses, a following comma is required to represent a tuple. Tuples are best used

for their original purpose; misapplication can result in inefficiencies, such as substituting

lists, sets, or dictionaries. To ensure efficient data processing and manipulation, choose the

suitable data structure after carefully considering the use cases.

8.8 TECHNICAL TERMS

Tuple, Indexing, Negative Indexing, Max, Min , Count,.Index, and Slicing

8.9 SELF ASSESSMENT QUESTIONS

Essay questions:

1. How is a tuple created and called? Explain.

2. What are the various tuple methods? Explain.

3. Explain about tuple functions with example.

 Short Notes:

1. Write about indexing access method.

2. How Tuple is different form the List and Dictionary.

3. Explain about membership operator in tuple.

8.10 SUGGESTED READINGS

1. Steven cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. "Python Pocket Reference" by Mark Lutz

4. "Python Essential Reference" by David Beazley

5. "Python Programming: An Introduction to Computer Science" by John Zelle

6. "Introduction to Computation and Programming Using Python" by John Guttag

Mrs. A. SARVANI

LESSON- 09

PYTHON DICTIONARY

AIMS AND OBJECTIVES

The main aim of this chapter is understanding the concept of dictionary in Python

Programming. The discussion related to understand what dictionary and its characteristics.

After completion of this chapter, student will be able to know what dictionary, how it is

different from other data types. Also able to know operations, functions, and methods in

dictionary.

STRUCTURE

9.1 Introduction

9.2 Python Dictionary

 9.2.1 The Characteristic of Dictionary

 9.2.2 Creating Python Dictionary

9.3 Accessing Dictionary Elements

 9.3.1 Access Dictionary by Key

 9.3.2 Access dictionary by get () method.

 9.3.3 Access of Nested Dictionary

9.4 Dictionary Methods

 9.4.1 Update Elements Methods

 9.4.2 Remove Elements Methods

 9.4.3 keys () and values() Methods

9.5 Dictionary Functions

 9.5.1 len() method

 9.5.2 sorted () method.

 9.5.3 all () method

 9.5.4 any () function

 9.6 Summary

 9.7 Technical Terms

 9.8 Self-Assessment Questions

9.9. Suggested Readings

9.1. INTRODUCTION

Python, a programming language, is equipped with a wide variety of tools and functions. The

dictionary is one example of such a feature. In the Python programming language, a dictionary

is a collection of key-value pairs. Uniqueness is required for the dictionary keys. A value of any

kind could be assigned to the dictionary. Python's dictionary is a data structure that makes it

Data Science using Python 9.2 Python Dictionary

possible for us to develop code that is both simple and very effective. The fact that the keys of

this data structure can be hashed is the reason why it is referred to as a hash table in many

different languages. In a moment, we will comprehend the significance of this.

Using Python dictionaries, we can easily obtain a value that has been associated with a specific

key and then immediately access that value. It is recommended that we make use of them if we

are looking for a certain Python object, also known as a lookup method.

9.2 PYTHON DICTIONARY

A dictionary in Python is a set of objects that let's us store information in key-value pairs.

With Python dictionaries, we may rapidly obtain a value by associating it with a distinct key.

Using them whenever we need to locate (search for) a certain Python object is a good

concept. For this purpose, lists can also be used, but they operate far more slowly than

dictionaries.

9.2.1. The Characteristic of Dictionary

 In the first place, the dictionary will have information in the form of key-value pairs.

 A colon ":" sign is used to visually define the key and the values.

 The representation of an item can consist of a single key-value pair.

 It is not permitted to have duplicate keys.

 It is possible to acknowledge duplicate values.

 It is quite OK to use heterogeneous objects for both keys and values.

 The order of the insertion is not maintained.

 a dictionary object that is capable of being altered.

 Dictionary entries behave in a dynamic manner.

 The notions of indexing and slicing are not applicable in this situation.

9.2.2. Creating Python Dictionary

In python, a dictionary is created using the key:value pairs using the curly brackets {} and is

separated by commas. The syntax for creating dictionary is shown below:

Syntax:

my_dict = {

 "key1":"value1",

 "key2":"value2"

 }

In the above syntax my_dict is a dictionary created with two pair of items differentiated with

different keys and values.

Example:

creating a dictionary

country_capitals = {

 "Germany": "Berlin",

 "Canada": "Ottawa",

 "England": "London"

}

Centre for Distance Education 9.3 Acharya Nagarjuna University

In the above example country_capitals is a dictionary created with three pair of items which

includes {"Germany": "Berlin"}, {"Canada": "Ottawa"} and { “England": "London"}.

9.3. ACCESSING DICTIONARY ELEMENTS

To access an element from the dictionary there are three ways and are described below:

 Access by Key

 Access by get () function

 Access of nested dictionary

9.3.1 Access Dictionary by Key

We can access the value of a dictionary item by placing the key inside square brackets. It

accesses and prints the values associated with the keys. The keys and values showcasing

can be of different data types (string and integer).

Syntax:

 Value= dictionary_name[‘Key’]

 Example:

 State= dic_county [‘Andhra Pradesh’]

Example:

Data Science using Python 9.4 Python Dictionary

Output:

9.3.2 Access dictionary by get() method

The code demonstrates accessing a dictionary element using the get() method. It retrieves

and prints the value associated with the key 3 in the dictionary ‘Dict’. This method provides

a safe way to access dictionary values, avoiding KeyError if the key doesn’t exist.

Example:

Centre for Distance Education 9.5 Acharya Nagarjuna University

Output:

9.3.3 Access of Nested Dictionary

To access the value of any key in the nested dictionary, use indexing [] syntax. It first

accesses main dictionary associated with the key and then, it accesses a specific value by

navigating through the nested dictionaries.

Example:

Output:

Data Science using Python 9.6 Python Dictionary

9.4 DICTIONARY METHODS

Dictionary methods are used to perform specific functionality over dictionary that may be

updating, adding, extracting a, removing and etc operations on keys and items. Some of the

functions includes in given Table 9.1.

Table 9.1. Dictionary Methods

Function Description

pop() Removes the item with the specified key.

update() Adds or changes dictionary items.

clear() Remove all the items from the dictionary.

keys() Returns all the dictionary's keys.

values() Returns all the dictionary's values.

get() Returns the value of the specified key.

popitem() Returns the last inserted key and value as a tuple.

copy() Returns a copy of the dictionary.

9.4.1. Update Elements Methods

Dictionaries are subject to change. Using an assignment operator, we can add new things or

change the value of existing items.

Example:

https://www.programiz.com/python-programming/methods/dictionary/pop
https://www.programiz.com/python-programming/methods/dictionary/update
https://www.programiz.com/python-programming/methods/dictionary/clear
https://www.programiz.com/python-programming/methods/dictionary/keys
https://www.programiz.com/python-programming/methods/dictionary/values
https://www.programiz.com/python-programming/methods/dictionary/get
https://www.programiz.com/python-programming/methods/dictionary/popitem
https://www.programiz.com/python-programming/methods/dictionary/copy

Centre for Distance Education 9.7 Acharya Nagarjuna University

Output:

By declaring value together with the key, for example, Dict[Key] = ‘Value’, one value at a time

can be added to a Dictionary. Another approach is to use Python’s update () function. Python’s

update () method is a built-in dictionary function that updates the key-value pairs of a

dictionary using elements from another dictionary or an iterable of key-value pairs. With

this method, you can include new data or merge it with existing dictionary entries.

Example:

Data Science using Python 9.8 Python Dictionary

Output:

9.4.2. Removing Elements Methods

A key can be removed from a dictionary in three ways: from an individual entry, from all

entries, or from the entire dictionary.

1. The pop () function can be used to remove a single element. The value of the key that has

been specified to be eliminated is returned by the pop () function.

2. To randomly remove any elements (key-value pairs) of the dictionary, we can use

the popitem() It returns the arbitrary key-value pair that has been removed from the

dictionary.

3. Using the clear () method, all elements can be eliminated at once. The del keyword is

used to completely delete the entire dictionary.

Example:

Centre for Distance Education 9.9 Acharya Nagarjuna University

Output:

9.4.3 keys () and values() Methods

In Python, the keys () function returns a view object that contains dictionary keys, which

enables quick access and iteration across the dictionary.The values() method in Python

returns a view object that contains all of the dictionary values. This view object can be

accessed and iterated through in an effective manner within Python.

Syntax:

 d = {'key': 'value'}

 d.keys()

Syntax:

d = {'key': 'value'}

d. values ()

Example:

Data Science using Python 9.10 Python Dictionary

In the above example , created dictionary called dic_country with three elements with the

usage of keys() and values() fucntions displayed the information related every key and values

associated with elements stored in dic_county dictionary. The reslut shown in output.

Output:

9.5 PYTHON DICTIONARY FUNCTIONS

The Python dictionary offers a wide range of methods that may be utilized to conduct operations

on key-value pairs in an easy and convenient manner. The following is a list of functions using

the Python dictionary shown in Table 9.1.

Table 9.1. Python Dictionary Functions

Function

Python Expression Description

len() len(my_dictionary)

Returns the length of the dictionary (key

count).

sorted () sorted (dictionary_name) Returns the dictionary with keys sorted in

ascending order.

all () all (dictionary_name) Returns True if all the keys in the dictionary

are True (not 0 and False).

any ()

any(dictionary_name)

Returns True is any of the keys in the

dictionary is True.

str () str (dictionary_name) Returns a string representation of the

dictionary passed as the argument.

9.5.1 len() function

Using the len() method, which returns the item count, one can determine the length of a

dictionary by its use. Printing the length of my dictionary is as follows:

Centre for Distance Education 9.11 Acharya Nagarjuna University

Example:

Output:

In the above example , dic_country elements count is determined by calling the len() function

and displayed lengh of the dictionary 3 it means dictinay holds the three elemtns and reslut

shown in output.

9.5.2 sorted () function.

Sorting the dictionary can be accomplished with Python's built-in keys functions, which

include the keys () and values () functions. Any iterable can be used as an argument, and it

will return the sorted list of keys you provided. The dictionary can be arranged in ascending

order by using the keys to sort the entries. First, let's get familiar with the below example.

Data Science using Python 9.12 Python Dictionary

Example:

Output:

We have declared a dictionary of names in the code that was just presented. We made use of

the built-in function in conjunction with the sorted() method, which provided us with a list of

the keys that had been sorted. We then proceeded to utilize the items() function in order to

obtain the dictionary in the order that it was sorted.

9.5.3 all() function

A dictionary's keys are the only elements that are examined when the all() method is applied to it;

the values are not examined. In the event that not all of the keys in the dictionary are true, the all()

method will return FALSE; but, if all of the keys are true, it will return false. In the event that the

dictionary does not consist of any entries, the all() function also returns a value of TRUE.

Centre for Distance Education 9.13 Acharya Nagarjuna University

Example:

Output:

9.5.4 any () function

The any () method only verifies the keys of a dictionary when it is applied to a dictionary; it does

not verify the values. If any of the keys associated with the dictionary are true, the any () method

will return TRUE; otherwise, it will return FALSE. In the event that the dictionary does not

consist of any entries, the any () function also returns FALSE.

Data Science using Python 9.14 Python Dictionary

Example:

Output:

9.6 SUMMARY

Python is an excellent programming language that comes with a wide variety of feature sets.

The fact that it provides a structured code makes it much simpler to comprehend. Since

Python is currently one of the most widely used programming languages in the modern day, it

is essential to have a comprehensive understanding of this programming language. This

chapter will provide you with practical experience on how to work with dictionary along

methods and functions.

Centre for Distance Education 9.15 Acharya Nagarjuna University

9.7 TECHNICAL TERMS

Dictionary, Update, any, key, value, Get Method, Pop, Clear, and pop Items.

9.8 SELF ASSESSMENT QUESTIONS

Essay questions:

1. How is a dictionary created and called? Explain.

2. What are the various dictionary methods? Explain.

3. Explain about dictionary functions with example.

 Short Notes:

1. Write about get () access method.

2. How dictionary is different form the List.

9.9 SUGGESTED READINGS

1. Steven cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. "Python Pocket Reference" by Mark Lutz

4. "Python Essential Reference" by David Beazley

5. "Python Programming: An Introduction to Computer Science" by John Zelle

6. "Introduction to Computation and Programming Using Python" by John Guttag

 Mr. G. V. SURESH

LESSON- 10

PYTHON FUNCTION

AIMS AND OBJECTIVES

The main aim of this chapter is understanding the concept of Functions in Python

Programming. The discussion related to creating new functions and working with built-n

functions. After completion of this chapter, student will be able to know what function is,

how different types of functions created. Also able to know use of recursive and lamba

functions. The nested functions and scope of the variable with good number of examples is

the objective of this chapter.

STRUCTURE

10.1 Introduction

10.2 Python Function

10.2.1 Creating a Function

10.2.2 Calling a Function

10.2.3 Advantages of using Functions

10.3 Types of Functions

10.3.1 User-defined Functions

10.3.2 Built-in Functions

10.4 Function Arguments

10.5 Return Statement

10.6 Python Recursive Function

10.7 Python Lamba Function

10.8 Summary

10.9 Technical Terms

10.10 Self-Assessment Questions

10.11 Suggested Readings

Data Science using Python 10.2 Python Function

10.1. INTRODUCTION

Various teams collaborate on a single project and subsequently create distinct modules.

Developers working on various modules frequently break up their code into smaller, more

understandable pieces called functions to facilitate debugging. This makes it easier for

developers to discover the fault in terms of function. Functions in Python can be built-in or

user-defined; this chapter covers the full features.

Even if you have only been programming for a few days, you have probably already come

across functions like print (), len (), and type (). All of them are integrated features. This

chapter is going to demonstrate to you how to define and reuse your own functions in

addition to how to use the built-in functions.

10.2. PYTHON FUNCTIONS

Python functions help to simplify and organize programming by enabling the creation of

smaller code segments. As a result, code is easier for people to understand when they view it.

Functions improve reusability and reduce repetition in code, which is their primary benefit.

10.2.1 Creating A Function.

When defining a function in Python, we must adhere to the following guidelines and syntax is

shown in figure 10.1:

The function definition is initiated with the def keyword.

 The function name that follows the def keyword is followed by parentheses with the

user-passed arguments and a colon at the end.

 The function's body begins with an indented block on a new line following the addition

of the colon.

 The caller receives a result object from the return statement. Return none is the same as

a return statement without an argument.

Fig10.1. Syntax for declaring function.

Centre for Distance Education 10.3 Acharya Nagarjuna University

10.2.2 Calling a Function

After defining a function in Python, we may call it by using its name followed by parenthesis

containing the function's parameters i.e, greet().When the function greet () is called, the

program's control moves to the function definition. All the code within the function is

executed. Following the function call, program control moves on to the following statement.

The necessary steps are described in the figure 10.2 below.

Fig 10.2. The python function working

10.2.3. Advantages of using Functions

 Python functions increase code modularity by breaking it down into smaller portions

that can be solved independently, making implementation easier.

 Python functions reduce redundancy and save time rewriting code. All we must do is

call the function once it has been defined.

 Defining a function in Python allows for unlimited calls, increasing code reuse.

 Using functions to separate huge programs improves readability and debugging.

10.3. TYPES OF FUNCTIONS

There are two types of functions in python which are shown in Figure 10.3:

 User-Defined Functions

 Built-in Functions

Fig10.3. Types of User-defined functions

Data Science using Python 10.4 Python Function

10.3.1. User-Defined Functions

These functions are defined by the user to carry out any given task. Defining a function

allows you to reuse code, making it more modular and easier to read. In Python, you can

define a function with the def keyword, followed by the function name and any required

parameters in parentheses. The python code that defines the function and is shown in below

example.

Example:

In the above example, the welcome () function is completely user-defined and outputs the

message "Welcome to Python world!". The function is only defined once but has different

types. This demonstrates the value of function reusability. Similarly, we can build any

function to fulfill a certain goal.

Output:

Centre for Distance Education 10.5 Acharya Nagarjuna University

10.3.2.Built-in Functions

Python's built-in functions are already defined. A user must remember the name and

parameters of a certain function. There is no need to redefine these functions because they

have already been defined.Some of the widely used built-in functions are given below and

shown in Table 10.1:

Table 10.1 Built-in Functions in Python

Function Description

pow() Returns the power of two numbers

abs() Returns the absolute value of a number

max() Returns the largest item in a python iterable

min() Returns the largest item in a python iterable

sum() Sum() in Python returns the sum of all the items in an iterator

type() The type() in Python returns the type of a python object

Sqrt() Executes the python built-in to find sqrt of the given number

The following two example python codes shown in below demonstrate the usage of built-in

functions to fulfil the specific task. In the first example python code imported math module

and later performed the two functions pow () and sqrt() operations. The result of each

function is produced on the output.

https://www.scaler.com/topics/sum-in-python/
https://www.scaler.com/topics/type-in-python/

Data Science using Python 10.6 Python Function

Example

Output

Similarly, the second example also imported math module and perform the abs (), max () and

min () operations respectively. The absolute function took the -25 is a negative number and

produced the output as 25. The maximum of 5 and 9 is determined by max () and minimum is

returned by min () function.

Centre for Distance Education 10.7 Acharya Nagarjuna University

Example

Output:

10.4. FUNCTION ARGUMENTS

The function is defined with arguments, and it given choice to enter different inputs to the

function. The argument is passed as a parameter in the function definition. The parameters of

different number and different types i.e., int, string, list etc.

The syntax of define function with arguments:

 def fun_name (argument-1, argument-2, ……, argument-N):

 Function body

Data Science using Python 10.8 Python Function

Example:

Output:

Centre for Distance Education 10.9 Acharya Nagarjuna University

In this example, the welcome () function takes one parameter, name, to personalize the

welcome message. When the function is called, it will print out a message to the console that

greets the specified name.

To call a user-defined function, type its name followed by any required parameters in

parentheses. Here’s an example:

 welcome ("Ravindra")

 welcome("Varun")

This would output the following message to the screen:

Welcome to Python world! Ravindra

Welcome to Python world! Varun

End of Program

User-defined functions can be as simple or complicated as required. They can contain any

number of statements, control structures, and other functions, and they can return one or more

values as needed. When writing a function, use a descriptive name that really defines what it

does, as well as clear, clear code that is simple to read and understand.

Example:

Data Science using Python 10.10 Python Function

Output:

In the above example, we have created a function named add_num () with arguments:

a and b. The 10 and 20 are given inputs to the add_num() function. Once the function is

called immediately the control will be gone to definitition and complete body is executed and

produced result and is shown in Output screen shown in above.

10.5 RETURN STATEMENT

The function is defined with parameters and a return type, and it provides the option to enter

a variety of inputs to the function in addition to return values. After the argument has been

evaluated with the various arguments, the value is eventually returned. The argument is

passed through a series of parameters.

The syntax of define function with arguments:

 def fun_name (argument-1, argument-2, ……, argument-N):

 Function body

 return eval(argument-1, argument-2, ……, argument-N))

Like function defined in the previous section add_num () with arguments: a and b is defined

in the below example. The 10 and 20 are given inputs to the add_num() function. However,

in the body of function included the return statement which returns the value of c and is result

of addition among the a and b variables. The complete result is shown in Output screen

shown in above.

Centre for Distance Education 10.11 Acharya Nagarjuna University

Example

Output

10.6 PYTHON RECURSIVE FUNCTION

Python's recursive functions are those that call themselves to carry out a task in an iterative

manner until a particular condition is satisfied. If an issue can be split down into smaller sub-

problems that can be addressed using the same approach, then recursive functions can be

used to solve the problem. The following is an illustration of a simple recursive function in

Python that was designed to compute the factorial of a given number:

Data Science using Python 10.12 Python Function

Example:

Output:

In this example, the fact_num() recursive function is explained as follows:

 Create a recursive function called factorial, which accepts an integer n as input.

 Create a base case: If n equals 0 or 1, return 1 because the factorial of 0 or 1 is 1.

 In the recursive scenario, call the factorial function with n-1 as the argument, then

multiply the result by n.

 Return the result of the recursive call.

 To calculate the factorial of a given number, call the factorial function and pass the

required value as an argument.

Centre for Distance Education 10.13 Acharya Nagarjuna University

Recursion is a technique in which a function solves a problem by breaking it down into

smaller subproblems of the same type. By continuously solving these smaller subproblems

and aggregating their findings, the original problem is solved. Recursive functions are slower

and use more memory than iterative solutions, therefore they may not be the best option for

complex problems. Furthermore, recursive functions can be more difficult to debug and

understand than iterative methods, thus they should only be used when they clearly

outperform other approaches.

10.7 PYTHON LAMBDA FUNCTION

In Python, a lambda function is a short enough anonymous function that can accept any

number of parameters but has only one expression. Lambda functions are also referred to as

"anonymous functions" because they do not require a named function to be defined.

Here's an example of a simple lambda function for adding two numbers.In this example, the

lambda function takes two inputs (x and y) and returns their sum.To use a lambda function,

assign it to a variable and call it like a regular function.

Example:

Data Science using Python 10.14 Python Function

Output:

Python's map() function accepts a function and a list as its arguments. The function calls

itself "map." The function is invoked with a lambda function and a list, and the function then

returns a new list that contains all of the lambda-modified items that were returned by that

function for each item.

Example:

Centre for Distance Education 10.15 Acharya Nagarjuna University

Output:

In order to apply a function to each individual item in a list, the following is an example of

how to use a lambda function together with the map() function. For the purpose of this

illustration, the lambda function is utilized to square each individual element in the numbers

list, and the map () function is utilized to apply the lambda function to each individual

element of the list. After that, the list of squared values that produced the result is displayed

on the screen.

Table 10.2. Lamba Function Vs Non-Lamba Function

With lambda function Without lambda function

Work for single-line statements that

return a value.

Work for multi-line statements inside

function

Ideal for executing quick tasks or data

manipulations.
Ideal for executing multi-line code

Using the lambda function might

reduce code readability.

This allows comments and necessary

function descriptions for good

readability.

In this, we seen the Lambda function that is available in Python. An n-th number of

arguments can be passed to a lambda function at the same time. Having said that, it only

returns a single argument at a time. In the above section, we will go over certain lambda

functions together with the Python program code, and we will also provide some examples of

these functions. In addition, we talked about the Lambda function in Python, including the

list, and the map function.

10.8 SUMMARY

Functions are an essential part of any programming language. Python functions are defined

with the def keyword, and they can accept any number of arguments. Python also allows

anonymous functions. They can return a single value or a list of values, one by one. Python

Data Science using Python 10.16 Python Function

functions are reusable code blocks that execute specified tasks, making it easier to divide

software into smaller, more modular portions. They help to structure and manage the code, as

well as eliminate duplication.

10.9 TECHNICAL TERMS

Function, Recursive Function, Arguments, Lamba Function, Builit-in Function, Absolute

Value, Minimum and Maximum.

10.10 SELF ASSESSMENT QUESTIONS

Essay Questions:

1. How is user defined function is created and called? Explain.

2. What are the various ways to create user-defined function? Explain.

3. Explain about Recursive Function with example.

Short Notes:

1. Write about Lamba Function

2. List functions in Math Module.

10.11 SUGGESTED READINGS

1. Steven cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. Smith, J. - Python Programming: A Comprehensive Guide. Publisher.

4. Brown, A. - Mastering Python Modules. Publisher.

5. Python Software Foundation- Python Documentation. Retrieved from

https://docs.python.org/3/

Mr. G. V. SURESH

https://docs.python.org/3/

LESSON- 11

PYTHON LOCAL AND GLOBAL VARIABLES

AIMS AND OBJECTIVES

The main aim of this chapter is understanding the different types of variables used in the

python programming. The discussion related to local and global variables is focused on this

chapter. After completion of this chapter, student will be able to know what the scope of

variable in python code is. Also able to differentiate the local and global variables efficiently.

The nested functions and scope of the variable with good number of examples is the objective

of this chapter.

STRUCTURE

11.1 Introduction

11.2 Local Variable

 11.2.1 Advantages of Local Variables

 11.2.2 Disadvantages of Local Variables

11.3 Global Variable

 11.3.1 Use of Global Keyword

 11.3.2 Update of Global Variables

 11.3.3 Precedence: Local Variables and Global Variables

 11.3.4 Advantages and Disadvantages of Global Variables

11.4 Best Practices for Using Local and Global Variables in Python

11.5 Difference between Local Variable and Global Variable

11.6 Nested Functions and Variable Scope

11.6.1 Accessing variables from outer functions.

11.6.2 Nonlocal Variables

11.7 Summary

11.8 Technical Terms

11.9 Self-Assessment Questions

11.10 Suggested Readings

Data Science using Python 11.2 Python Local and Global Variables

11.1. INTRODUCTION

Variables are the containers that are used in Python for the storage of any data values.

Python, in contrast to other languages, does not have a "statically typed" syntax. Neither the

declaration of variables nor the declaration of their types is required before we use them. As

soon as we give a value to a variable for the first time, we have created that variable. Our

program does not make all of its variables accessible from every single area of it, and not all

of the variables are present for the same period of time. The way a variable is defined

determines both the locations at which it can be accessed and the length of time it has been in

existence. The part of a program that allows a variable to be accessed is referred to as the

scope, and the amount of time that the variable is present is referred to as the lifetime of the

variable.

When it comes to programming, both local and global variables are quite important. In order

to write code that is both modular and efficient, it is vital to have a solid understanding of

how local and global variables operate within functions. This lesson will cover the idea of

local and global variables in functions, including their declaration, scope, and best practices.

We will also explore the best practices for using these variables.

11.2. LOCAL VARIABLE

A local variable is a variable that is either declared within a function or used as a parameter in

that function. These variables are named local because they can only be accessed and used

within the function or block of code in which they are declared. Local variables are

inaccessible from outside the function. When a local variable is declared within a function, it

is defined and assigned a value when the function is called or executed. The variable remains

in memory while the function is running and is destroyed when the function is finished.

Example:

Centre for Distance Education 11.3 Acharya Nagarjuna University

Output:

In this example, the function num_sum accepts two parameters, and b. Within the function, a

local variable named result is declared and given the value a + b. This local variable's value is

only accessible within the num_sum function.When the function is invoked with the

arguments 10 and 20 (num_sum (10, 20)), the local variable result is computed and printed,

with the sum shown as 30.

Example:

Output:

Data Science using Python 11.4 Python Local and Global Variables

Outside of the function, the local variable result is inaccessible. If you try to access it with

print(result), you will receive a NameError since the variable is not specified in the global

scope.

11.2.1. Advantages of Local Variables

• Local variables are only accessible within the function or code block they are defined

in. This makes the code more legible and understandable because developers can see

exactly where and when a variable is used.

• Local variables are limited to their defined scope, reducing name conflicts.

• Local variables are only available within their defined scope, preventing hostile actors

from accessing sensitive data. This increased security can assist prevent data breaches

and other security risks.

• Simplified debugging: Limiting the scope of variables can help identify the root cause

of a fault. If a variable is only accessible within a certain function, the search for the

problem can be limited to that function.

11.2.1 Disadvantages of Local Variables:

• The most significant drawback of local variables is that they can only be accessed

inside the scope in which they are defined.

• Sharing data between different functions or code blocks can become more challenging

because of this behaviour.

• Because local variables are only stored in memory while the function or code block in

which they are defined is running, this results in an increase in the amount of memory

that is being used.

• It is necessary to define local variables within the function or code block in which

they are being used, which can add additional effort and complexity to the

development process.

11.3. GLOBAL VARIABLE

Variables that are defined outside of any function or block of code are referred to as global

variables. These variables are accessible from any location within the program to which they

are assigned. They are visible and accessible throughout the entirety of the program because

they have a global scope, which means they are accessible. In most cases, the declaration of

thet occurs at the beginning of the program.

Centre for Distance Education 11.5 Acharya Nagarjuna University

Example:

Output:

The variable an is declared as a global variable in this example, which means that it is not

contained within any function or block of code. Because of this, it is accessible from any

location within the application and has a worldwide scope.

The global variable and is within the scope of both the f1() and f2() functions, which means

that they are able to access and output the value of the variable. This demonstrates that global

variables can be accessed and utilized within separate functions, which provides a mechanism

for data to be shared among multiple components of the program.

Data Science using Python 11.6 Python Local and Global Variables

11.3.1. Use of Global Keyword

The global keyword is a crucial component of Python, as it allows for the modification of

global variables inside a local scope, such as within a function. It communicates to the

Python interpreter in a clear and concise manner that a variable is global, which enables you

to modify the value of the variable from within a function. To preserving state or data

throughout the execution of your application, this is absolutely necessary.

Example:

Centre for Distance Education 11.7 Acharya Nagarjuna University

You might use the global keyword in the following manner, for instance, if you have a global

variable called "a" and you want to increment it while you are working within a function:

 global a

 a=a+1

Output:

The above code demonstrates how the global keyword bridges the scope between local and

global variables by essentially incrementing the global 'a' variable from within the f1()

function using the global keyword.

11.3.2. Update of Global Variables

Modifying global variables within functions can be achieved using the global keyword, as

shown earlier. However, there are alternative techniques, such as passing global variables as

arguments to functions and returning modified values.

Example:

Data Science using Python 11.8 Python Local and Global Variables

Output:

You are required to make use of the global keyword whenever you want to access or edit a

global variable that is contained within a function.First, the value 100 is assigned to the

global variable an in this particular illustration. It is possible to access and edit the global

variable a by utilizing the global keyword, which is utilized within the function f() to signal

that we want to do so. After that, a new value of nine is assigned to it, and it is printed, which

results in a = nine. When the print("The a value is:", a) command is executed outside of the

function, it accesses the changed global variable a, which is still 9. This results in the final

output displaying a value of 9.

When utilizing the global keyword, it is essential to keep the following considerations in

mind in order to decrease the likelihood of making mistakes:

• Prior to assigning a value to the variable that is contained within the function, the

global statement ought to be declared.

• If a value is assigned to a variable without first declaring it to be global, the result will

be the creation of a new local variable rather than the modification of the global

variable.

• They are a source of complexity and potential dangers, such as unintended side effects

and difficulties in debugging.

• It is vital to apply this technique with caution and carefully record any alterations

made to global variables.

11.3.4 Precedence: Local Variables and Global Variables

If you define a variable that is local to a function and it has the same name as a global

variable, then the local variable will take priority within the scope of the function. The global

variable, on the other hand, is unaffected by the function within which it is contained.

Centre for Distance Education 11.9 Acharya Nagarjuna University

Example:

Output:

As an illustration, a global variable denoted by the variable ‘a’ is defined with a starting value

of 30 . A value 9 is assigned to a local variable called ‘a’ , which is declared within the

function f(). Each time the function f() is used, the value of the local variable a=9 is printed

out. When the print("The a value is:", a) statement is executed outside of the function, it

references the global variable a (30). This is since the scope of the local variable is restricted

to the function itself. This is the reason why the output displays There is ‘a’ value of 30.

11.3.5 Advantages and Disadvantages of Global Variables

Advantages of Global Variables:

• In addition to being simple to use, global variables are also simple to retrieve because

they may be accessed from any location within the code.

Data Science using Python 11.10 Python Local and Global Variables

• Global variables can be utilized to facilitate the sharing of data between several

classes or functions.

• You can use global variables to store data that needs to be persistent during the

lifetime of the program.

Disadvantages of Global Variables:

• As was discussed previously, it is possible for global variables and local variables to

share the same name, which might increase the likelihood of confusion.

• When global variables are adjusted, there is a possibility that the code will be affected

in a manner that is not intended.

• Global variables provide a security concern since they can be accessed and modified

by anybody who has access to the code without the need for authorization.

11.4 BEST PRACTICES FOR USING LOCAL AND GLOBAL VARIABLES IN

PYTHON

When it comes to using local and global variables in Python, the best practices are as follows:

1. Prefer local variables and restrict the use of global variables. It is advisable to minimize

the utilization of global variables, as they have the potential to make the code more

difficult to comprehend and maintain.

2. When declaring variables, it is important to ensure that they are declared in the shortest

scope possible, especially in situations when they are required. By doing so, the

complexity is reduced, and any undesired side effects or conflicts with other variables

are avoided simultaneously.

3. Select names that are descriptive for variables. Having names that have meaning

enhances the readability and comprehension of the code.

4. Using function parameters and return values, you can transfer data from one function to

another. As a result, this effectively encourages modularity and prevents an excessive

dependence on global variables.

5. Make use of local variables to store intermediate results or temporary values within

functions. By doing so, the code remains uncluttered and prevents the global namespace

from being cluttered.

Centre for Distance Education 11.11 Acharya Nagarjuna University

11.5 DIFFERENCE BETWEEN LOCAL VARIABLE AND GLOBAL VARIABLE

 Scope: On the other hand, global variables have a global scope, which means that

they can be accessed and edited from any location inside the code. On the other hand,

local variables are characterized by their limited scope, which means that they can

only be accessed and modified within the confines of the domain of the function or

class in which they are defined.

 Visibility: Local variables are only accessible within the scope in which they are

defined. Within the boundaries of their designated scope, they cannot be accessed or

modified in any way. Global variables, on the other hand, are accessible and

modifiable from any area of the program's code because they are visible throughout

the entirety of the program.

 Initialization: It is necessary to explicitly declare and initialize local variables within

the block of code or function in which they are utilized. On the other hand, global

variables can be initialized at any point in the program, including the point of

definition or any other portion of the program.

 Memory Allocation: Local variables are normally given memory when the block of

code or function to which they belong is run. The memory is then deallocated after the

scope is exited. Global variables, on the other hand, are memory that is allocated at

the beginning of the program and remain in memory until the program is terminated.

 Change of Implicit: The modification of the value of a local variable within a

function or code block does not influence the value of the variable outside of that

scope. Altering the value of a global variable, on the other hand, can influence the

value of the variable throughout the entire program.

 Precedence: When a local variable and a global variable have the same name, the

local variable is given priority inside its scope. This is because the local variable is

more specific. It is because of this that the local variable will be utilized rather than

the global variable within the code block or function in which it is defined.

11.6. NESTED FUNCTIONS AND VARIABLE SCOPE

The concept of nested functions, which are functions within functions, might be thought of as

an inception of programming. They produce a hierarchical structure of variable scopes, with

each nested function having its own local scope. It is possible to access variables in nested

functions from the scope that is the most inner to the scope that is the most outer. If a variable

is not discovered within the local scope, Python will look for it within the scopes that

surround it.

11.6.1. Accessing variables from outer functions

The code in the example demonstrates how nested functions can access variables on both the

local and outer scopes of their respective functions.

Data Science using Python 11.12 Python Local and Global Variables

Example:

Output:

Centre for Distance Education 11.13 Acharya Nagarjuna University

The above code where defined outer_f(), which accepts the variable a as outer one and assign

value 20. Later defined local inner_f() function and declared inner variable b with value 30.

After that both inner and outer functions are invoked and produced values 30 and 20

respectively with precedence.

11.5.2. Nonlocal Variables

Variables that are not local serve as a connection between the local and global scopes. When

utilized in nested functions, they are employed to modify variables that are contained within

an enclosing scope that is not global.

Example:

Output:

For the sake of this illustration, the nonlocal keyword enables us to edit the 'a' in the outer

scope, which is not the global scope. When it is necessary to make changes to variables that

are in outer scopes within nested functions, nonlocal variables come in handy. It is possible to

Data Science using Python 11.14 Python Local and Global Variables

manipulate data within a restricted scope without having to resort to global variables because

to their capabilities.

11.7 SUMMARY

Python is a programming language that has both local and global variables, each of which

serves a distinct purpose and has a different scope. Different from global variables, which

may be accessed from any part of the program, local variables can only be accessible from

inside the section of code or function in which they are defined. Global variables can be

accessed from anywhere in the program.

Local variables provide modularity, maintainability, and clarity to the structure of the

information by limiting their visibility and ensuring that their value is not changed by other

components of the program. This allows the information to be organized for easier

comprehension. The utilization of global variables should be approached with caution to

avoid any potential issues, even though they offer a wide range of accessibility. By restricting

their visibility and ensuring that their value is not influenced by other components of the

program, local variables offer modularity, maintainability, and clarity to the structure of the

information.

11.8 TECHNICAL TERMS

Variable Scope, Local Variable, Global Variable, Non-Local Variable, Scope, Precedence,

Visibility.

11.9 SELF ASSESSMENT QUESTIONS

Essay Questions:

1. Compare Local and Global variables.

2. Illustrate the concept of Non-Local Variables

3. Explain best practices to use local and global variables.

Short Notes:

1. Define Variable Scope.

2. List advantages of Local Variable

3. Mention the usage of global variables.

11.10 SUGGESTED READINGS

1. Steven Cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. Smith, J. - Python Programming: A Comprehensive Guide. Publisher.

4. Brown, A. - Mastering Python Modules. Publisher.

Dr. U. SURYA KAMESWARI

LESSON- 12

PYTHON MODULE

AIMS AND OBJECTIVES

The aim is to significance understand of python modules. A discussion of how to create new

module and import the existing modules is focused on this chapter. After completion of this

chapter, student will be able to know how to create and import modules. Random and Math

modules are also understood thoroughly with examples.

STRUCTURE

12.1 Introduction

12.2 Python Module

 12.2.1 Creating a Python Module

 12.2.2 Advantages of Python Module

12.3 Python Module Import

 12.3.1 Import Specific Attributes from Module

 12.3.2 Import All Attributes from Module

12.4 Random Module

12.4.1 randint() Function

12.4.2 randrange() Function

12.4.3 shuffle () Function

12.4.4 choice () Function

12.4.5. random.triangular() Function

12.5 Math Module

12.5.1 Numeric Functions

12.5.2 Logarithmic and Power Functions

12.5.3 Trigonometric and Angular Functions

12.6 Summary

12.7 Technical Terms

12.8 Self-Assessment Questions

12.9 Suggested Readings

Data Science using Python 12.2 Python Module

12. 1 INTRODUCTION

As the size and complexity of our programs continue to grow, the necessity of organizing our

code will become increasingly important. It is recommended that a large and complicated

program be broken down into files and functions that each carry out a particular function.

When we add more and more functions into a program, we ought to think about arranging the

functions by placing them in modules. This is something that we should consider doing.

A module is nothing more than a file that includes code written in Python. In the process of

dividing a program into modules, each module ought to include functions that carry out

activities that are connected to one another. For instance, if the information contained in a

book is not indexed or organized into separate chapters, the book will become tedious and

difficult to understand. For this reason, the book is broken up into chapters, which makes it

much simpler to comprehend.

12.2. PYTHON MODULE

Python modules, on the other hand, are files that contain code that is very similar to one

another. As a result, a module makes the Python code that defines classes, variables, and

functions easier to understand and use.

12.2.1. Creating Python Module

To create a Python module, write the desired code and save that in a file with .py extension.

Let’s create a simple arithmatic.py in which we define three functions, add(),sub(),mul and

div().

Example:

https://www.geeksforgeeks.org/python-programming-language/

Centre for Distance Education 12.3 Acharya Nagarjuna University

12.2.2. Advantages of Python Modules

The following are some of the benefits that Python modules offer:

 One of the reasons why putting code into modules is beneficial is because it allows

one to import the functionality of the module.

 It is possible to utilize a module in combination with other Python programs.

Consequently, it offers the capability of code reusability.

 The use of a module enables us to structure our Python code in a sensible manner.

 Creating a module that contains code that is related to one another makes the code

simpler to comprehend and use.

 It is possible to classify and place in a single module attribute that are conceptually

like one another.

12.3 IMPORT PYTHON MODULE

We can import the functions, and classes defined in a module to another module using

the import statement in some other Python source file. When the interpreter encounters an

import statement, it imports the module if the module is present in the search path.

The syntax to import python module is:

import module_name

For example, to import the module arithmatic.py, we need to put the following command at

the top of the script.

import arithmatic

This does not import the functions or classes directly instead imports the module only. To

access the functions inside the module the dot(.) operator is used.

import arithmetic. add

import arithmetic. sub

Example:

Data Science using Python 12.4 Python Module

Output:

In the above code accessed addition functions with arithmetic.add (4.6) and produced result

add result = 10. Similarly, we can access other two methods and produced results related to

subtraction and multiplication operations.

12.3.1 Import Specific Attributes from Module

With Python's from statement, it is possible to import particular properties from a module

without importing the module in its entirety. To do anything like import the add () method

from the arithmatic.py module, for instance, we need to place the following command at the

very beginning of the script.

from module import function-name (or) class-name

Example:

Centre for Distance Education 12.5 Acharya Nagarjuna University

Output:

In the above code accessed only two functions add() and mul() are imported separately with

the statement from arithmetic import add, mul respectively. Later accessed and produced

result add result = 11 and sub result=12 with various a and b values. The result is shown in

output.

12.3.2 Import All Attributes in Module

When the import statement is used when combined with the * symbol, all of the names from

a module are imported into the namespace that is now being used. Using the symbol * comes

with both positive and negative implications. However, if you are unsure about what you will

require from the module, it is not suggested that you use the * symbol; otherwise, you should

use it.

Syntax:

from module_name import *

Example:

Data Science using Python 12.6 Python Module

Output:

In the above code imported all functions of math modules which is a built-in module at a time

with the statement from arithmetic import * respectively. Later accessed and produced square

root result = 4 of a given value 16. Similarly, factorial result of 6 is 720 respectively and is

shown in output.

12.4 RANDOM MODULE

Among the built-in modules in Python, the Python Random module is responsible for the

generation of random integers that fall within the range of 0.0 to 1.0. When it comes to the

implementation of a randomization technique, the Python Random Module is helpful. The

occurrence of these numbers is completely arbitrary and does not adhere to any rules or

instructions. By utilizing this module, we can generate random integers, display a random

item for a list or string, and perform a variety of other functions.

Additionally, we have the capability to select a sequence of numbers from a list of elements,

offering us the ability to choose from a sequence of numbers. It is possible to use it to

generate integers from a certain range in order to select the relevant number from among

them. Nevertheless, it generates the numbers in a pseudorandom method, which, if we go

deeper into its working mechanism under the hood, cannot be considered entirely random.

Despite this, it continues to be useful for usage.

The following are some examples of typical applications:

 To participate in a game of chance in which the computer is required to roll a handful

of dice, select a number, or flip a coin,

 To randomly let a new hostile spaceship to appear and shoot at you, to randomly

shuffle a deck of playing cards, and to randomly allow a new enemy spaceship to

appear.

 To conduct a computerized model for the purpose of calculating the environmental

impact of constructing a dam, we will simulate the possibility of rainfall.

 To encrypting your use of the internet for banking purposes.

 Simulate Data for Time series analysis

Centre for Distance Education 12.7 Acharya Nagarjuna University

 Random Number Generations for various typical applications

There are numerous categories of functions that can be accessed through the random module.

There is a description of those in the table that is provided.

Table 12.1 Python Random Module Functions

Function Meaning

randint(a, b)
Generate a random integer number within a

range a to b.

randrange(start,stop, step)
Returns a random integer number within a range by

specifying the step increment.

choice(seq) Select a random item from a seq such as a list, string.

sample(population, k)
Returns a k sized random samples from

a population such as a list or set

choices(population, weights, k)

Returns a k sized weighted random choices with

probability (weights) from a population such as a list

or set

seed(a=None, version=2)
Initialize the pseudorandom number generator with a

seed value a.

shuffle(x[, random]) Shuffle or randomize the sequence x in-place.

uniform(start, end)
Returns a random floating-point number within a

range

triangular(low, high, mode)

Generate a random floating-point number N such

that low <= N <= high and with the specified mode

between those bounds

betavariate(alpha, beta)

Returns a random floating-point number with the

beta distribution in such a way that alpha > 0 and

beta > 0.

expovariate(lambd)

It returns random floating-point numbers,

exponentially distributed. If lambda is positive, it

returns values range from 0 to positive infinity. Else

from negative infinity to 0 if lambda is negative.

gammavariate(alpha, beta)
Returns a random floating-point number N with

gamma distribution such that alpha > 0 and beta > 0

12.4.1. randint() Function

The random.randint() function generates a random integer from the range of numbers

supplied.

https://pynative.com/python-random-randrange/
https://pynative.com/python-random-randrange/#h-random-randrange-to-generate-random-integers-within-a-range
https://pynative.com/python-random-choice/
https://pynative.com/python-random-sample/
https://pynative.com/python-weighted-random-choices-with-probability/
https://pynative.com/python-random-seed/
https://pynative.com/python-random-shuffle/
https://pynative.com/python-get-random-float-numbers/

Data Science using Python 12.8 Python Module

Example:

O

Output:

In the above code imported random module, and generated random integer number with

randomint() function. Two times called those functions and generated different random

integer numbers every time 14 and 13 among different ranges respectively.

12.4.2. randrange() Function

The function selects an item randomly from the given range defined by the start, the stop, and

the step parameters. By default, the start is set to 0. Likewise, the step is set to 1 by default.

Example:

Centre for Distance Education 12.9 Acharya Nagarjuna University

Output:

In the code that was just presented, the random module was imported, and the randomrange()

method was used to generate a random integer value. By calling those functions twice, we

were able to generate distinct random integer numbers each time, with 17 and 55 being

derived from a different range of values, respectively.

12.4.3. shuffle () Function

The random.shuffle() function shuffles the given list randomly.

Example:

Data Science using Python 12.10 Python Module

Output:

In the code that was just presented, the random module was imported, and the shuffle ()

method was used to shuffle a random list of numbers. By calling that function list of numbers

swapped and we can apply this functions to other types of list with different data types also.

The list after and before shuffle is shown in output respectively.

12.4.4. choice () Function

Utilizing the 'choice ()' function is a helpful tool to have at your disposal when you need to

select a random element from a sequence. In the given example, we make use of the 'choice()'

function to pick a color at random from the list of colors.In the real world, recommendation

systems make use of the choice() function to select items at random from a list. These

systems are used to make suggestions to consumers regarding products, movies, or music

depending on their tastes. Additionally, these systems ensure that material on websites and

apps will remain current.

Example:

Centre for Distance Education 12.11 Acharya Nagarjuna University

Output:

12.4.5. random.triangular() Function

A random floating-point integer N is returned by the random.triangular() function. This

number is chosen in such a way that lower is equal to N and upper is equal to N, and the

mode that is supplied falls between these two bounds.When a lower bound is not specified,

the default value is ZERO, and the upper bounds are set to one. Additionally, the peak

parameter by default is set to the point that is in the middle of the boundaries, which results in

a distribution that is symmetric.If you want to use these numbers in a simulation, you can

generate random numbers for triangular distribution by using the random.triangular()

function. in other words, to get value from a probability distribution that is triangular.

Example:

Data Science using Python 12.12 Python Module

Output:

The random.uniform() function returns a random floating-point number between the range

what we supplied. In the next example, generated 24.09 as float value reterived from the

range(5.5,25.5). Other method is sample () which is pick random numbers from the given list

of values based on the k value 3. The other two methods are betavariate() and

gammavariate(0 are used to return float numbers with gamma and beta distribution

respectively.

Example:

Centre for Distance Education 12.13 Acharya Nagarjuna University

Output:

A useful tool for incorporating randomness into your programs and projects is the random

module that is available in the Python programming language. The purpose of this module is

to give a comprehensive collection of functions that will assist you in accomplishing your

objectives, whether you are developing games, running simulations, or need to make

judgments based on probabilities. The capabilities of the "random" module are extensive and

diverse, ranging from the generation of random numbers with a variety of distributions to the

shuffling of sequences and the selection of random pieces.

12.5 PYTHON MATH MODULE

Functions and constants in mathematics are the components that make up the Math Module.

For mathematical activities, it is a built-in module that was developed. The math module

includes the mathematical functions that are used to perform fundamental operations like

addition (+), subtraction (-), multiplication (*), and division (/), as well as more complex

operations like trigonometric, logarithmic, and exponential functions.

In the math module, the following is a list of all the mathematical functions that you can use

whenever you find yourself in need of them in your program.However, in this section all

functions are categorized into three types:

 Numeric Functions

 Logarithmic and Power Functions

 Trigonometric and Angular Functions

Data Science using Python 12.14 Python Module

12.5.1 Numeric Functions

In this section, we will discuss the functions that are utilized in number theory as well as

representation theory. For example, we will discuss how to determine the factorial of a

number. Functions such as ceil(), floor(), factorial(), and fabs() are examples of some of the

numerical functions. The Ceil value represents the integral value that is the smallest and

greater than the number, whereas the floor value represents the integral value that is the

greatest and smaller than the number overall. The ceil() and floor() methods, respectively, can

be utilized to perform this calculation with relative ease. A single line of code is all that is

required to get the factorial of a number when we make use of the factorial() method. If the

integer is not integral, an error message will be provided. Fabs() is a function that returns the

absolute value of the number. 3. Finding the GCD.

Table 12.2. Python Math Module Numeric Functions

Function Description

ceil(x) Returns the smallest integral value greater than the number

floor(x) Returns the greatest integral value smaller than the number

factorial(x) Returns the factorial of the number

fabs(x) Returns the absolute value of the number

ceil(x) Returns the smallest integral value greater than the number

floor(x) Returns the highest integral value greater than the number

isfinite(x) Check whether the value is neither infinity not Nan

isinf(x) Check whether the value is infinity or not

isnan(x) Returns true if the number is “nan” else returns false

ldexp(x, i) Returns x * (2**i)

modf(x) Returns the fractional and integer parts of x

trunc(x) Returns the truncated integer value of x

gcd(x, y) Compute the greatest common divisor of 2 numbers

The math module is imported into this code, the value 5.7 is assigned to the variable a, and

then the ceiling and floor of an are calculated and printed out according to the results. First,

the math module is imported into the program, then the value 5 is assigned to the variable a,

and last, the factorial of an is computed and finally printed. In this piece of code, the math

module is imported, the values 4 and 16 are assigned to the variables a and b, respectively,

and then the greatest common divisor (GCD) of a and b is calculated and printed out.

Importing the math module, assigning the value -20to the variable a, and then calculating and

printing the absolute value of an are all operations that are performed by this code.

https://www.geeksforgeeks.org/python-math-ceil-function/
https://www.geeksforgeeks.org/python-math-floor-function/
https://www.geeksforgeeks.org/python-math-factorial-function/
https://www.geeksforgeeks.org/python-math-fabs-function/
https://www.geeksforgeeks.org/python-math-ceil-function/
https://www.geeksforgeeks.org/python-math-library-isnan-method/
https://www.geeksforgeeks.org/python-ldexp-function/
https://www.geeksforgeeks.org/python-math-module/geeksforgeeks.org/python-modf-function/
https://www.geeksforgeeks.org/g-fact-35-truncate-in-python/
https://www.geeksforgeeks.org/python-math-gcd-function/

Centre for Distance Education 12.15 Acharya Nagarjuna University

Example:

Output:

12.5.2 Logarithmic and Power Functions

It is possible to write power functions using the notation pow(x,n), where n represents the

power of x. On the other hand, logarithmic functions are believed to be the inverse of

exponential functions. Among the functions is the pow() function, which is responsible for

computing x**y. Following the conversion of its parameters into float, this function then

computes the power of the argument.

 The logarithmic value of an as expressed with base b is returned by the log() function. It

is the natural log that is used to compute the value if the base is not specified.

 With base 2, the log2(a) function calculates the value of the logarithm of a. The accuracy

of this number is higher than that of the value of the function that was explained earlier.

Data Science using Python 12.16 Python Module

 With base 10, the log10(a) function calculates the value of the logarithm of a. The

accuracy of this number is higher than that of the value of the function that was

explained earlier.

Table 12.3 Math Module Logarithmic and Power Functions

Function Description

exp(x) Returns the value of e raised to the power x(e**x)

expm1(x) Returns the value of e raised to the power a (x-1)

log(x[, b]) Returns the logarithmic value of a with base b

log1p(x) Returns the natural logarithmic value of 1+x

log2(x) Computes value of log a with base 2

log10(x) Computes value of log a with base 10

pow(x, y) Compute value of x raised to the power y (x**y)

Example:

https://www.geeksforgeeks.org/python-math-library-exp-method/
https://www.geeksforgeeks.org/python-math-library-expm1-method/
https://www.geeksforgeeks.org/pow-in-python/

Centre for Distance Education 12.17 Acharya Nagarjuna University

Output:

First, the math module is imported into the program, and then the logarithms of three

different values are computed and printed accordingly. Logarithms can be worked with using

several functions that are provided by the math module. These functions include log(), log2(),

and log10().The pow(6,8) is estimated with and then various log() functions with different

base values are tested respectively. The complete results is shown in output.

12.5.3 Trigonometric and Angular Functions

You are all required to be familiar with trigonometry and the fact that it can be challenging to

determine the sine and cosine values of any angle. The math module encompasses built-in

functions that allow for the discovery of such values and even the modification of values

between degrees and radians. The sine, cosine, and tangent of the value that was supplied as

an argument are returned by the sin(), cos(), and tan() methods, respectively. The radians

should be used for the value that is passed through this function.

Table 12.4 Math Module Trigonometric and Angular Functions

Function Name Description

acos(x) Returns the arc cosine of value passed as argument

asin(x) Returns the arc sine of value passed as argument

atan(x) Returns the arc tangent of value passed as argument

atan2(y, x) Returns atan(y / x)

cos(x) Returns the cosine of value passed as argument

hypot(x, y) Returns the hypotenuse of the values passed in arguments

sin(x) Returns the sine of value passed as argument

tan(x) Returns the tangent of the value passed as argument

gamma(x) Return the gamma function of the argument

lgamma(x)
Return the natural log of the absolute value of the gamma

function

https://www.geeksforgeeks.org/python-math-acos-function/
https://www.geeksforgeeks.org/python-math-asin-function/
https://www.geeksforgeeks.org/python-math-atan-function/
https://www.geeksforgeeks.org/atan2-function-python/
https://www.geeksforgeeks.org/python-math-cos-function/
https://www.geeksforgeeks.org/python-math-function-hypot/
https://www.geeksforgeeks.org/python-math-sin-function/
https://www.geeksforgeeks.org/python-math-tan-function/
https://www.geeksforgeeks.org/python-math-library-gamma-function/

Data Science using Python 12.18 Python Module

Example:

Output:

Initially, this code imports the math module, which is responsible for providing a wide range

of mathematical functions. Afterwards, it establishes sin value of pi/8. Pi is the mathematical

constant that represents the ratio of the circumference of a circle to its diameter. Similarly

performed with cos() and tan() values of pi/8.

12.6 SUMMARY

To work with OOP in Python, classes and methods are extremely significant concepts they

contribute to the creation of code that is not only comprehensible but also reusable. By

building a class, you have the ability to put together a collection of information and

capabilities into a single entity that can be utilized in the construction of a variety of things.

You can have access to the methods and properties of an object after it has been formed by

Centre for Distance Education 12.19 Acharya Nagarjuna University

utilizing the dot notation. By having a solid understanding of Python's classes and objects,

you will be able to create code that is more logical, efficient, and maintainable.

12.7 TECHNICAL TERMS

Module, Import Package, Random Module, Math Module, Gamma Distribution, Logarithmic

Operations, Exponential Operations.

12.8 SELF ASSESSMENT QUESTIONS

Essay questions:

1. How is python module created? Explain.

2. What are the various ways to import python module? Explain.

3. Explain different functions in Random Module.

 Short Notes:
1. Define Python Module?

2. List functions in Math Module.

12.9 SUGGESTED READINGS

1. Steven cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. Python Software Foundation- Python Documentation. Retrieved from

https://docs.python.org/3/

Dr. U. SURYA KAMESWARI

https://docs.python.org/3/

LESSON - 13

PYTHON CLASSES AND OBJECTS

AIMS AND OBJECTIVES

The student will be able to understand the significance of classes and objects in Python,

describe how classes and objects created, and explain how it is processed through the course

of this chapter. A discussion of the class variables and object variables also focused here.

Following the completion of this chapter, you will be able to provide an explanation of the

differences between the public and private data members. An explanation of how built-in

class attributes works also be aware by the students in python.

STRUCTURE

13.1 Introduction

13.2 Python Class

 13.2.1 Creating a Python Class with Self argument.

 13.2.2 Advantages of Python Class

13.3 Python Object

 13.3.1 Creating a Python Object

 13.3.2 Class Variable and Object Variable

13.4 Class Methods

13.5 Access Specifiers

13.5.1 Public Access Specifier

13.5.2 Private Access Specifier

13.5.3 Private Method

13.6 Built-in Class Attributes

13.6.1 __dict__ Class Attribute

13.6.2 __doc__ Class Attribute

13.6.3 __name__ Class Attribute

13.6.4 __module__ Class Attribute

13.6.5 __bases__ Class Attribute

13.7 Summary

13.8 Technical Terms

13.9 Self-Assessment Questions

13.10 Suggested Readings

13.1. INTRODUCTION

The programming paradigm known as object-oriented programming (OOPs) is utilized in

Python. This paradigm makes use of objects and classes in the programming process.

Inheritance, polymorphisms, encapsulation, and other real-world elements are some of the

Data Science using Python 13.2 Python Classes and Objects

concepts that it intends to incorporate into the programming. One of the most important ideas

behind object-oriented programming is to link the data and the functions that act on that data

together as a single unit. This ensures that no other part of the code may access the data. The

following is a list of some of the OOP‟s concepts that are supported by Python and are shown

in Figure 13.1:

 Objects

 Classes

 Polymorphism

 Encapsulation

 Inheritance

Fig 13.1. OOP Concepts in Python

13.2. PYTHON CLASS

A class is a collection of objects. A class contains the blueprints or the prototype from which

the objects are being created. It is a logical entity that contains some attributes and

methods. To understand the need for creating a class let‟s consider an example, let‟s say you

wanted to track the number of dogs that may have different attributes like breed, and age. If a

list is used, the first element could be the dog‟s breed while the second element could

represent its age. Let‟s suppose there are 100 different dogs, then how would you know

Centre for Distance Education 13.3 Acharya Nagarjuna University

which element is supposed to be which? What if you wanted to add other properties to these

dogs? This lacks organization and it‟s the exact need for classes.

13.2. Creating a Python Class with Self argument

Class is a combination of set of attributes and methods. However, the methods are useful to

process or perform specific operations over attributes. Classes are created by keyword called

class. The attributes are the variables that belong to a class. Attributes are always public and

can be accessed using the dot (.) operator.

Syntax:

class Class Name:

 # Statement-1

 …

 …

 ….

 # Statement-N

Example:

class Student:

def __init__(self, name, age,marks):

 self.name = name

 self.age = age

 self.marks = marks

s1 = Student("Rama", 15, 80)

 s2 = Student(“Krishna”, 12, 60)

print(s1.name)

print(s1.age)

print(s1.marks)

In the above example, a class named Student using the class keyword is created with the

attributes name, age and marks. Class is initialized as self with the values of name=Rama,

age=15 and marks=80 with object s1. Finally individual elements related to the student class

are displayed. Similarly, other object s2 was also created and instantiated.

13.2.2. Advantages of Python Class

 Classes offer a convenient means of storing the data members and methods in a single

location, which contributes to the program's overall organization and helps to keep it

more organized.

 This object-oriented programming paradigm offers a few additional capabilities, one

of which is inheritance, which may be accessed through the utilization of classes.

 Classes are also useful for overriding any standard operator that may be present.

Data Science using Python 13.4 Python Classes and Objects

 Reusing code is made possible by the utilization of classes, which results in the

increase of the program's overall efficiency.

 Increasing the readability of the program can be accomplished by establishing a clear

structure for the code by grouping functions that are related to one another and storing

them in a single location (inside a class).

13.3. PYTHON OBJECTS

A state and a behavior are both associated with the object, which is an entity. It might be

anything taken from the real world, such as a mouse, keyboard, chair, table, pen, or anything

else. There are many different types of objects, including integers, texts, floating-point

numbers, even arrays, and dictionaries. On a more specific level, an object can be defined as

any single number or any single string.

The following three components are used to compose an object:

 State: The attributes of an object are what are used to represent the state of an object.

At the same time, it reflects the characteristics of an object.

 Behavior: it is exemplified by the techniques that an item possesses. The way in

which a thing reacts to other objects is another aspect that it represents.

 Identity: It provides an object with a name that is distinctly its own and makes it

possible for one object to communicate with other objects.

Let us use the example of the class dog, which was explained earlier, to comprehend the

identification, behavior, and state of the student. A possible interpretation of the identification

is that it is the name of the student. The name, age, and marks of the student are all examples

of attributes that can be the student‟s state. The behavior can be interpreted as indicating

whether the student is reading or writing now.

13.3.1. Creating a Python Object

Using this, an object of the class Student, which was declared earlier, will be created with the

name obj. Let's have a fundamental understanding of some terms that will be utilized while

working with objects and classes before we delve into the specifics of objects and classes

with example shown in Figure 13.2.

Fig 13.2. A Python Class and Object: Example

Centre for Distance Education 13.5 Acharya Nagarjuna University

Example:

Output:

In the above example the Person class is defined with the three states which includes Name,

Sex and Profession. The behaviors of the Person class includes work () and study (). After

that two objects known as „Jon‟ and „Jessa‟ are created. The fact that Jessa is a woman and

that she is employed as a software engineer is readily apparent. Jon, on the other hand, who is

Data Science using Python 13.6 Python Classes and Objects

a male and a lawyer, is a different story. In this case, both objects are formed from the same

class; nevertheless, their states and behaviors are distinct from one another.

13.3.2. Class Variable and Object Variable

Both instance variables and class variables are utilized during the process of designing a class

and the example shown in Figure 13.3.

There are two distinct ways in which attributes can be defined in Class:

 Instance Variable: Bound to Object

 Class Variable: Bound to Class

Instance variables are attributes that are connected to an instance of a class. Instance

variables are also known as instance variables. The constructor, often known as the __init__()

method of a class, is where we define individual instance variables. No share to any other

object. Every object has its own.

Class Variables: A class variable is a variable that is declared within a class, but it is not

declared within any instance method or __init__() method.It a variable belongs to class so

that it can be shared by every object associated with the class.

 Fig 13.3. Pyhon Class Attributes Example

There is no sharing of instance attributes between objects. Every object, on the other hand,

possesses its own copy of the instance attribute, which is exclusive to that item. The class

Centre for Distance Education 13.7 Acharya Nagarjuna University

variables are shared by each instance of a class. The value of a class variable, on the other

hand, does not change from one instance variable to another, in contrast to instance variables.

 13.4 CLASS METHODS

Within a class, we can define the three different kinds of methods that are described below in

object-oriented programming and are shown in Figure 13.4.

 Instance method: This method is utilized to access or modify the state of the object.

These methods are referred to as instance methods, and they are used when we

employ instance variables within a method.

 A class method is a method that is used to access or modify the state of a class. When

it comes to the implementation of methods, if we only use class variables, then we

should declare such kinds of methods as class methods.

 A static method: is a general utility method that is used to carry out a task with no

other component present. Because this static method does not have access to the class

attributes, we do not make use of any instance or class variables within this method.

Fig 13.4. Python Class Methods

Data Science using Python 13.8 Python Classes and Objects

Example:

Output:

Centre for Distance Education 13.9 Acharya Nagarjuna University

At the instance level, also known as the object level, work. Take, for instance, the case when

we have object that were formed from the student class known as „Arun‟ . These object had

name, age and school_name. Accessing and modifying the instance variables is possible

through the utilization of instance methods. Hence with the help of the method known as

modify_shool_name() changed name of the school_ name from „Chaitanya School „ to

„Narayana School‟ respectively.

13.5 ACCESS SPECIFIERS

Python is a programming language that is known for its simplicity and ease of use, yet it is

also known for its versatility and power. Python is distinguished from other programming

languages by its support for object-oriented programming (OOP), which is one of the major

aspects that sets it distinct. In the programming language Python, methods are functions that

are linked to an object and describe the behavior of that object. Encapsulation is a principle of

object-oriented programming that safeguards the data that is contained within a class by

utilizing access modifiers. Public, private, and protected access modifiers are the three types

of access modifiers that Python offers. These access modifiers place limits on the ability of

any object that is not a member of the class to access the member variables and methods of

the class.

13.5.1 Public Access Specifier

The member variables and methods are public by default, which means that they can be

accessed from any location within or outside of the class where the class is being declared. If

you want to make the class, its methods, and its attributes public, you do not need to use the

public keyword.

Example:

Data Science using Python 13.10 Python Classes and Objects

Output:

In the above example, developed a constructor for a Python class that we titled „Student‟ and

constructed a constructor that accepts three arguments that are named real_name, age, and

marks. After that, we created a variable outside of the class that we called „s‟, instantiated the

„Student‟ class with the appropriate arguments, and then printed the values of the variable

with the method display ().

13.5.1 Private Access Specifier

The "Private" access modifier, as its name suggests, is responsible for limiting the variables

and methods that are declared within a particular class to the environment of that class. To

put it another way, the variables and methods that are declared within a class can only be

accessed within the environment of that class since they are not accessible outside of that

class.

The Python programming language does not have any mechanism that restricts access to the

methods or variables. On the other hand, there is a path that we may take to restrict access to

the variables and methods that are available in Python. To mimic the effect of the private

access modifier, Python recommends using a double underscore when executing the code.

Those variables and methods that are preceded by a double underscore (__) are considered

private and cannot be accessed by anybody outside of the class in which they are contained.

An illustration will help us better comprehend it.

Centre for Distance Education 13.11 Acharya Nagarjuna University

Example:

Output:

The code that is presented above is responsible for the creation of the class „Student‟, as well

as the creation of a private variable called s.__rollno. Subsequently, we attempted to gain

access to the confidential information after we had created the class and given the necessary

inputs.

We received an AttributeError that stated that the class Student does not have an attribute

called __rollno. This occurred because private data included within a class cannot be

accessed by individuals who are not members of the class. But we can access the secret

methods and variables that are contained within the class.

Data Science using Python 13.12 Python Classes and Objects

The error generated above program is rectified with the modified code shown in given below:

Example:

Output:

With the output shown in above, shows that successfully accessed the all the attributes

belongs to public „name‟, „age‟, „marks‟ and private variable „__rollno‟ outside the class.

13.5.3 Private Methods

A method is private if it is not meant to be used by any program that is not a member of the

class in which it is defined. The implementation of the class's core functionality is

accomplished using these methods. It is not intended for these to be utilized by code from the

outside. The name of a private method in Python is preceded by a double underscore, which

specifies that the method is private.The syntax to define private method shown in below:

Centre for Distance Education 13.13 Acharya Nagarjuna University

Syntax:

class Class_Name

 def __init__(self):

 …

 …

 def __private_method(self): # Private Method

 …

 …

Instantiate, the class

obj = Class_Name ()

Example:

Output:

Data Science using Python 13.14 Python Classes and Objects

In the above code, defined a class that we will refer to as NewClass in the example cited

above. __private_method is the name of the private method that it possesses. It is possible to

invoke this method by calling the self.__private_method() function from the class constructor

(__init__). Since the method is preceded by a double underscore, it is considered private and

cannot be accessed by anyone outside of the class.

The advantages and disadvantages of private methods:

1. Private methods enable encapsulation. It is a core notion of object-oriented programming.

Making specific methods private allows the programmer to regulate how external code

accesses the class's internal capabilities. This increases the class's security and helps to avoid

undesired changes to its functionality.

2. Private methods enable code reusability by implementing internal functionality within a

class. This can help to reduce code duplication while improving code maintainability.

3. Private methods provide for easier debugging by isolating the class's behavior.

1. Private methods can only be accessed within the class where they are defined. This means

that if a programmer wishes to access the functionality of a private method from outside the

class, they must define a public method that calls the private method. This can increase the

code's complexity.

2. False sense of security: Python's secret methods are not actually private. They can still be

accessed outside of the class using the syntax _classname__methodname(). However, this is

considered poor practice and should be avoided.

3. Private methods can increase code complexity, making it difficult to comprehend and

maintain. This is especially relevant when private methods are inadequately documented.

13.6 BUILT-IN CLASS ATTRIBUTES

The built-in class attributes provide us with information about the class. Using the

dot (.) operator, we may access the built-in class attributes. The built-in class attributes in

python are listed below and shown in Table 13.1:

Table 13.1. Built-in Class attributes in Python

Attributes Description

_dict__ Dictionary containing the class namespace

__doc__ If there is a class documentation class, this returns it. Otherwise,

None

__name__ Class name.

__module__ Module name in which the class is defined. This attribute is

"__main__" in interactive mode.

__bases__ A possibly empty tuple containing the base classes, in the order

of their occurrence in the base class list.

Centre for Distance Education 13.15 Acharya Nagarjuna University

13.6.1 __dict__ Class Attribute

In Python, the __dict__ variable is used to represent a dictionary or other mapping object that

is utilized for the purpose of storing the properties of the assigned object. It is also possible to

refer to them as mappingproxy objects. To put it another way, each object in Python

possesses an attribute that is represented by the symbol __dict.

Example:

In the above code created class “Welcome” and initialized self-method and displayed

information related to name space with Welcome._dict_ and result is shown in output.

Output:

13.6.2 __doc__ Class Attribute

The documentation string for a module, class, function, or method is stored in the __doc__

property, which is a special attribute in the Python programming language. The

documentation string (also known as the documentation string) is a concise description of the

Data Science using Python 13.16 Python Classes and Objects

object that is frequently utilized in the Python documentation to offer documentation for the

object.

Example:

In the above code created class “Welcome” and initialized self-method and displayed

information related to class documenation with Welcome._doc_ and result is shown in

output.

Output:

13.6.3 __name__ Class Attribute

It is the name of the module that is returned by the __name__ attribute. In the default

configuration, the value of the __name__attribute is used to determine the name of the file,

Centre for Distance Education 13.17 Acharya Nagarjuna University

excluding the extension.py. A great instance of such a special variable is __name__. In the

event that the source file is used as the main program, the interpreter will assign the value

"__main__" to the __name__ variable. If this file is being imported from another module, the

name of the module will be assigned to the __name__ variable.

Example:

Output:

The reason for this is that the __name__ attribute is defined explicitly as a component of the

class specification. In the above example , „ Welcome‟ is produced as a name attribute

returned by the _name_attribute is given to the instance to the class.

Data Science using Python 13.18 Python Classes and Objects

13.6.4 __module__ Class Attribute

In the Python code below, we print the module of the class using the __module__ class

attribute.

Example:

Output:

13.6.5 __bases__ Class Attribute

The implementation of the __bases__ attribute of a class is carried out by a descriptor that is

located in the metaclass or type. On the other hand, you need to exercise a little bit of caution

Centre for Distance Education 13.19 Acharya Nagarjuna University

since type, which is one of the fundamental components of the Python object model, is an

instance of itself, and hence type. When, it comes to introspection, __bases__ does not

perform as you would expect it to.

Example:

Output:

In the above code created class “Welcome”, the information related to the module and base

class information is displayed using the Welcome._module_ and Welocme._base_ class

attributes. The result is _main_ and <class „object‟> shown in output.

13.7 SUMMARY

To work with OOP in Python, classes and methods are extremely significant concepts they

contribute to the creation of code that is not only comprehensible but also reusable. By

building a class, you can put together a collection of information and capabilities into a single

entity that can be utilized in the construction of a variety of things. You can have access to

the methods and properties of an object after it has been formed by utilizing the dot notation.

Data Science using Python 13.20 Python Classes and Objects

By having a solid understanding of Python's classes and objects, you will be able to create

code that is more logical, efficient, and maintainable.

13.8 TECHNICAL TERMS

Class, Object, Class variable, Object Variables, Class Attributes, Public Specifier, Private

Specifier, Private Method

13.9 SELF ASSESSMENT QUESTIONS

Essay questions:

1. What is private method? Discuss with example.

2. Compare public and private access specifiers.

3. Explain built-in class attributes with example.

 Short Notes:
1. Define Class?

2. List advantages of private methods

13.10 SUGGESTED READINGS

1. Steven cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. A Byte of Python by Swaroop C.H.

4. "Python 3 Object-Oriented Programming" by Dusty Phillips

Dr. KAMPA LAVANYA

LESSON- 14

PYTHON STATIC METHOD

AIMS AND OBJECTIVES

In this unit the student can recognize the importance of static methods in python,

describe what is static method, how it is created. The advantages and applications. After

completing this chapter, you will be able to explain how static method is different from the

normal class method. How static method is used in different applications. How to use it

properly.

STRUCTURE

14.1 Introduction

14.2 Creating Static Method

 14.2.1 using staticmethod()

 14.2.2 using @staticmethod.

14.3 Class Method Vs Static Method

14.4 Advantages of Static Method

14.5 Applications of Static Methods

14.5.1 Use utility function to a class

14.5.2 A single design

14.5.3 Smart Performance

14.5.4 Stateless Operations

14.5.5 Class Cohesion

14.7 Summary

14.8 Technical Terms

14.9 Self-Assessment Questions

14.10 Suggested Readings

Data Science using Python 14.2 Python Static Method

14.1 INTRODUCTION

Python is a versatile programming language that effortlessly blends Object-Oriented

Programming (OOP) features. While classes and objects are important in OOP, the methods

within these classes help a coder be more efficient. One such critical function is Python's

static method. A static method is one that is connected to the class itself rather than the

class's object.

Static methods complete a task independently of the class because they do not employ

implicit arguments like self or cls. As a result, static methods cannot change the state of a

class. It is there in a class because the method makes sense to be there. This method

facilitates the definition of utility methods by establishing a logical relationship to a class.

The method call is made directly on the class object or via a class instance.

14.2 CREATING STATIC METHOD

Python provides two ways to create a static method.

 staticmethod()

 @staticmethod

14.2.1 using staticmethod()

When you want to define a static method in a class, use staticmethod(). It is important to note

that the method should not contain the self-argument.

Syntax:

class Class_Name:

 def fun_name(arg1, arg2, ...):

 ...

 ...

Class_Name.fun_name = staticmethod(Class_Name.fun_name)

Class_Name.fun_name(value) #static method calling

Example:

Centre for Distance Education 14.3 Acharya Nagarjuna University

Output:

The above program was first designed using the class method, i.e., welcome () inside the

class student. Later, that procedure is changed to a static method using staticmethod() ,

which accepts the argument 'student.welcome'. Finally, we called the static method

'student.welcome(30) ' and produced output as “ Inside static method 30” .

Example2:

Data Science using Python 14.4 Python Static Method

Output:

The above calculator application contains a number of non-static functions, including add(),

sub(), and mul(). Later, all were converted to static methods and finally called. The results of

each procedure are documented separately.

14.2.2 using @staticmethod

This is the recommended technique to build a static method. We only need to mark the

method with the @staticmethod decorator.

Syntax:

class Class_Name:

 @staticmethod

 def fun_name(arg1, arg2, ...):

 ...

 ...

Class_Name.fun_name(value) #static method calling

Example1:

Centre for Distance Education 14.5 Acharya Nagarjuna University

Output:

The above program has the first static method, welcome (), which is part of the class student.

Later, the method is known as Stuedet.welcome(). Here there is no need of converting class

method to static method so that execution speed.

Example1:

Data Science using Python 14.6 Python Static Method

Output:

The above calculator program designed a number of static methods i.e., add(), sub() and

mul(). The result of each method is displayed as ―sum =18‖ with the x = 12 and y = 6 .

Similarly the remain two operations sub() and mul() produced result as ‗diffrence=11‘ and

‗Product = 60 ‗ with the given x and y values respectively.

14.3 CLASS METHOD Vs STATIC METHOD

The difference between the Class method and the static method is:

 A class method takes cls as the first parameter while a static method needs no

specific parameters.

 A class method can access or modify the class state while a static method can‘t

access or modify it.

 In general, static methods know nothing about the class state. They are utility-type

methods that take some parameters and work upon those parameters. On the other

hand, class methods must have class as a parameter.

 We use @classmethod decorator in python to create a class method and we use

@staticmethod decorator to create a static method in python.

Example:

Centre for Distance Education 14.7 Acharya Nagarjuna University

Output:

Table 14.1. Instance Method Vs Class Method Vs Static Method

Class Method Static Method

 Decorator: @classmethod  Decorator: @staticmethod

 Initial argument: cls (class itself)  No Initial argument

 Can‘t change state or properties of

class

 Can‘t change state or properties of

class

 Good for class-specific operations

 Good for utility operations not

related to class

 class-level variables allowed  class-level variables restricted

14.4 Advantages of Static Method in Python

There are several benefits to using static methods in Python classes. All static techniques are:

 Risk-free. Static methods are unable to alter the class state since they do not have

access to the data stored in the class or instance. There is no way for this method to

modify the behavior or have an unforeseen impact on a class.

 Consistent. The execution of a static method is independent of any class or instance

state. A static method always acts in the same predictable way.

 Adaptable. One way to make code more readable and to indicate that a function does

not depend on an instance is to call its static method on a class.

 A tool for organizing. To avoid naming conflicts and improve organization, static

methods offer a mechanism to namespace code.

14.5. APPLICATIONS OF STATIC METHODS

Static methods are more important. While working with real-time classes, there are several

reasons to use static methods, some of which are explained below:

Data Science using Python 14.8 Python Static Method

14.5.1 Use utility function to a class.

Like other methods contained within a class, static methods are incapable of accessing the

class's properties, which restricts their intended application. Utilizing static methods has

numerous applications, including utility functions. These are methods for performing routine,

frequently resorted-to operations that are beneficial for accomplishing typical programming

duties. As a consequence, we can declare a static method on a utility function that requires

only the parameters and does not require access to any class attributes.

Example:

In the above program, a ‗Times’ class is present which exclusively operates on Times with a

colon. Conversely, in our prior database, every time was enclosed in dashes. To transform

colon-times to dash-times, the toDashTime utility function has been implemented within

Times. The technique is classified as static due to its lack of requirement for accessing any

Times properties; it solely accepts the parameters. While it is possible to construct

toDashTime instances outside the Times class, it is more logical to maintain its functionality

within the times class.

Output:

Centre for Distance Education 14.9 Acharya Nagarjuna University

As shown in the output static method successfully converts the 03-13 into the format of 03:13

so the two times are equal. Other than any format input is given to time which is not trained

by static method will produces output false.

14.5.2 A single design

It is necessary to make use of static methods in situations where we do not want subclasses of

a class to modify or override a particular implementation of a method.

From here created the sub-class class TimesWithColon(Times) to the original class Times

as shown in below:

class Times:

 def __init__(self, time):

 self.time = time

 def getTime(self):

 return self.time

 @staticmethod

 def toDashTime(time):

 return time.replace("-",":")

class TimesWithColon(Times):

 def getTime(self):

 return Times.toDashTime(self.time)

Example:

Data Science using Python 14.10 Python Static Method

Output:

It would be undesirable for the subclass TimesWithColon to override the static utility

function toDashTime in this scenario since the toDashTime method is only useful for one

thing, which is to alter the time to dash-times.Overriding the getTime() function in the

subclass in order to make it compatible with the TimesWithColon class would allow us to

easily take advantage of the static method and use it to our greatest advantage.

14.5.3 Smart Performance

In situations when it is not necessary to access or modify data that is specific to an object,

static methods may be marginally faster. In circumstances in which performance is of the

utmost importance and method calls are made often, the static approach may provide a speed

improvement that is not significant but nonetheless important.

There is no requirement for that is_weather_good() method to access any instance state in

this particular scenario. For the sake of making this function more efficient, we may make it a

static method. It is not necessary to give any additional arguments when you use a static

method because the method is looked up directly on the class. Static methods are thus quicker

and more efficient than instance methods as a result of this.

Example:

Centre for Distance Education 14.11 Acharya Nagarjuna University

Output:

14.5.4 Stateless Operations

Utilizing a static method is the best option in situations where a method does not need to

access or modify data that is specific to a class or instance being used. The purity of the

method is preserved because of this, as it guarantees that no extraneous object state is

referenced.

14.5.5 Cohesion Class

When a method does not need to access or modify data that is specific to a class or instance

that is being used, the best solution is to use a static method. This is because static methods

are not accessible to other methods. This ensures that no superfluous object state is

referenced, which leads to the preservation of the method's purity. Consequently, the method

is not compromised.

14.6. LIMITATIONS OF STATIC METHOD

 It is not possible for the method to access the instance or any of its attributes.

Consider utilizing instance methods or class methods if you discover that you require

access to data that is exclusive to an instance.

 It is not possible to make use of the approach. In the event that you desire

polymorphic behavior, you should think about utilizing instance methods or class

method.

 It is not possible for the technique to make use of inheritance. Using class methods is

something to think about if you need to inherit features or characteristics.

 Excessive use of the procedure may result in a reduction in the modularity of the

code. When it is suitable, you should think about using instance methods or class

methods to improve the organization and maintainability of the code.

 When it comes to selecting between static methods, instance methods, and class

methods, understanding these constraints will assist you in making good decisions in

Real-time implementations.

Data Science using Python 14.12 Python Static Method

Example:

Calculations can be performed with static methods; however, these methods have restrictions

when it comes to polymorphism and inheritance on the other hand.

Output:

'NotImplementedError' was raised in the output that was shown above since the method

was overridden. On the other hand, because static methods cannot be overridden, the same

error is generated even when they are invoked on a Circle instance. The relevance of

selecting the appropriate method type based on the behavior that is intended is brought to

light by this limitation.

Centre for Distance Education 14.13 Acharya Nagarjuna University

14.7 SUMMARY

When it comes to Python programming, static methods are extremely significant since they

contribute to the creation of code that is not only comprehensible but also reusable,

encapsulated, quicker, and simpler to test. The addition of static functions to your Python

applications makes them simpler to manage and allows them to run more quickly. A

comprehensive examination of the Python static method is presented in this chapter. Topics

covered include its distinctions from other types of methods, its benefits, and its applications.

14.8 TECHNICAL TERMS

Static Method, Class Method, Instance Method, Inheritance, Polymorphism, Less Coherent,

Overriding, Utility

14.9 SELF ASSESSMENT QUESTIONS

Essay questions:

1. What is static method? Discuss various applications.

2. Compare instance, class and static method.

3. Explain types of methods to create static method.

 Short Notes:
1. Define Static Method.

2. List advantages of static methods

3. Limitations of static methods

14.10 SUGGESTED READINGS

1. Steven cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. A Byte of Python by Swaroop C.H.

4. Python Programming for Beginners: 2 Books in 1—The Ultimate Step-by-Step Guide

to Learn Python Programming Quickly with Practical Exercises by Mark Reed

5. Python Crash Course, 2nd Edition: A Hands-On, Project-Based Introduction to

Programming by Eric Matthes

Dr. KAMPA LAVANYA

